如图直角坐标系中直线AB与x轴正半轴、y轴正半轴交于A,B两点,已知B(0,4),∠BAO=30°,P,Q分别是线段OB,AB上的两个动点,P从O出发以每秒3个单位长度的速度向终点B运动,Q从B出发以每秒8个单位长度的速度向终点A运动,两点同时出发,当其中一点到达终点时整个运动结束,设运动时间为t(秒).
(1)求线段AB的长,及点A的坐标;
(2)t为何值时,△BPQ的面积为23;
(3)若C为OA的中点,连接QC,QP,以QC,QP为邻边作平行四边形PQCD,
①t为何值时,点D恰好落在坐标轴上;
②是否存在时间t使x轴恰好将平行四边形PQCD的面积分成1:3的两部分,若存在,直接写出t的值.

3
【考点】四边形综合题.
【答案】见试题解答内容
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/4/20 14:35:0组卷:1025引用:6难度:0.3
相似题
-
1.在人教版八年级上册数学教材P53的数学活动中有这样一段描述:在四边形ABCD中,AD=CD,AB=CB,我们把这种两组邻边分别相等的四边形叫做“筝形”,如图(1).
(1)知识应用:小风想要做一个如图(2)所示的风筝,他想先固定中间的“十字架”,再确定四周,从数学的角度看,小风确定“十字架”时应满足什么要求?并证明你的结论.
(2)知识拓展:如图(3)所示,如果D为△ABC内一点,BD平分∠ABC,且AD=CD,试证明:AB=CB.发布:2025/6/9 0:30:2组卷:72引用:1难度:0.2 -
2.(1)如图1,在四边形ABCD中,∠B=∠C=90°,点E是边BC上一点,AB=EC,BE=CD,连接AE、DE.判断△AED的形状,并说明理由;
(2)在平面直角坐标系中,已知点A(2,0),点B(5,1),点C在第一象限内,若△ABC是等腰直角三角形,求点C的坐标;
(3)如图2,在平面直角坐标系中,已知点A(0,1),点C是x轴上的动点,线段CA绕着点C按顺时针方向旋转90°至线段CB,连接BO、BA,则BO+BA的最小值是 .发布:2025/6/8 23:30:1组卷:886引用:3难度:0.3 -
3.如图,正方形ABCD中,AE=BF.
(1)求证:△BCE≌△CDF;
(2)求证:CE⊥DF;
(3)若CD=6,且DG2+GE2=41,则BE=.发布:2025/6/8 23:30:1组卷:360引用:3难度:0.6