试卷征集
加入会员
操作视频

如图,已知抛物线y=ax2+bx+4与x轴交于A(-2,0)、B两点,与y轴交于C点,其对称轴为直线x=1.
(1)直接写出抛物线的解析式;
(2)把线段AC沿x轴向右平移,设平移后A、C的对应点分别为A′、C',当C'落在抛物线上时,求A'、C'的坐标;
(3)除(2)中的平行四边形ACC'A'外,在x轴和抛物线上是否还分别存在点E、F,使得以A、C、E、F为顶点的四边形为平行四边形?若存在,求出E、F的坐标;若不存在,请说明理由.

【考点】二次函数综合题
【答案】(1)y=-
1
2
x2+x+4;(2)C′(2,4),A′(0,0);(3)存在.点E、F的坐标为:E1(3+
17
,0),F1(1+
17
,-4);E2(3-
17
,0),F2(1-
17
,-4);E3(-4,0),F3(2,4).
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/4/20 14:35:0组卷:188引用:3难度:0.3
相似题
  • 1.已知函数y=
    -
    1
    2
    x
    2
    +
    1
    2
    x
    +
    m
    x
    m
    x
    2
    -
    mx
    +
    m
    x
    m
    ,记该函数图象为G.
    (1)当m=2时,
    ①已知M(4,n)在该函数图象上,求n的值;
    ②当0≤x≤2时,求函数G的最大值.
    (2)当m>0时,作直线x=
    1
    2
    m与x轴交于点P,与函数G交于点Q,若∠POQ=45°时,求m的值;
    (3)当m≤3时,设图象与x轴交于点A,与y轴交于点B,过点B作BC⊥BA交直线x=m于点C,设点A的横坐标为a,C点的纵坐标为c,若a=-3c,求m的值.

    发布:2025/6/8 14:30:2组卷:3081引用:7难度:0.1
  • 2.我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.如图所示,点A、B、C、D分别是“蛋圆”与坐标轴的交点,已知点D的坐标为(0,-3),AB为半圆的直径,半圆圆心M的坐标为(1,0),半圆半径为2.
    (1)请你求出“蛋圆”抛物线部分的解析式,并写出自变量的取值范围;
    (2)你能求出经过点C的“蛋圆”切线的解析式吗?试试看;
    (3)开动脑筋想一想,相信你能求出经过点D的“蛋圆”切线的解析式.

    发布:2025/6/8 14:30:2组卷:237引用:45难度:0.1
  • 3.如图,一条抛物线与x轴相交于A、B两点(点A在点B的左侧),其顶点P在线段MN上移动.若点M、N的坐标分别为(-1,-2)、(1,-2),点B的横坐标的最大值为3,则点A的横坐标的最小值为(  )

    发布:2025/6/8 8:0:6组卷:4103引用:19难度:0.7
深圳市菁优智慧教育股份有限公司
粤ICP备10006842号公网安备44030502001846号
©2010-2025 jyeoo.com 版权所有
APP开发者:深圳市菁优智慧教育股份有限公司| 应用名称:菁优网 | 应用版本:5.0.7 |隐私协议|第三方SDK|用户服务条款
广播电视节目制作经营许可证|出版物经营许可证|网站地图
本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正