已知椭圆C:x2a2+y2b2=1(a>b>0)的焦距为23,且经过点A(0,-1),过点A的直线l与椭圆交于点B.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)设M为线段AB的中点,O为原点,OM所在的直线与椭圆C交于P,Q两点(点Q在x轴上方),问是否存在直线l使得△AMQ的面积是△BMO面积的6倍?若存在,求直线l的方程,并求此时四边形APBQ的面积,若不存在,请说明理由.
x
2
a
2
+
y
2
b
2
=
1
2
3
【考点】直线与椭圆的综合.
【答案】(Ⅰ);
(Ⅱ)存在,直线方程为:,或,四边形APBQ的面积为.
x
2
4
+
y
2
=
1
(Ⅱ)存在,直线方程为:
6
x
-
y
-
1
=
0
6
x
+
y
+
1
=
0
8
6
5
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/4/20 14:35:0组卷:242引用:2难度:0.5
相似题
-
1.已知椭圆C:
=1(a>b>0)的一个顶点坐标为A(0,-1),离心率为x2a2+y2b2.32
(Ⅰ)求椭圆C的方程;
(Ⅱ)若直线y=k(x-1)(k≠0)与椭圆C交于不同的两点P,Q,线段PQ的中点为M,点B(1,0),求证:点M不在以AB为直径的圆上.发布:2024/12/29 12:30:1组卷:370引用:4难度:0.5 -
2.设椭圆
+x2a2=1(a>b>0)的右顶点为A,上顶点为B.已知椭圆的离心率为y2b2,|AB|=53.13
(Ⅰ)求椭圆的方程;
(Ⅱ)设直线l:y=kx(k<0)与椭圆交于P,Q两点,直线l与直线AB交于点M,且点P,M均在第四象限.若△BPM的面积是△BPQ面积的2倍,求k的值.发布:2024/12/29 12:30:1组卷:4514引用:26难度:0.3 -
3.如果椭圆
的弦被点(4,2)平分,则这条弦所在的直线方程是( )x236+y29=1发布:2024/12/18 3:30:1组卷:456引用:3难度:0.6