【阅读理解】如图1,∠BOC为等边△ABC的中心角,将∠BOC绕点O逆时针旋转一个角度α(0°<α<120°),∠BOC的两边与三角形的边BC,AC分别交于点M,N.设等边△ABC的面积为S,通过证明可得△OBM≌△OCN,则S四边形OMCN=S△OMC+S△OCN=S△OMC+S△OBM=S△OBC=13S.
【类比探究】如图2,∠BOC为正方形ABCD的中心角,将∠BOC绕点O逆时针旋转一个角度α(0°<α<90°),∠BOC的两边与正方形的边BC,CD分别交于点M,N.若正方形ABCD的面积为S,请用含S的式子表示四边形OMCN的面积(写出具体探究过程).
【拓展应用】如图3,∠BOC为正六边形ABCDEF的中心角,将∠BOC绕点O逆时针旋转一个角度α(0°<α<60°),∠BOC的两边与正六边形的边BC,CD分别交于点M,N.若四边形OMCN面积为6,请直接写出正六边形ABCDEF的面积.
【猜想结论】如图4,∠BOC为正n边形ABCDE…的中心角,将∠BOC绕点O逆时针旋转一个角度α(0°<α<(360n)°),∠BOC的两边与正n边形的边BC,CD分别交于点M,N.若四边形OMCN面积为S,请用含n、S的式子表示正n边形ABCDE…的面积.

1
3
6
360
n
【考点】四边形综合题.
【答案】【类比探究】S;
【拓展应用】6;
【猜想结论】6S.
1
4
【拓展应用】6
6
【猜想结论】6S.
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:43引用:1难度:0.4
相似题
-
1.如图,A、B、C、D为矩形的四个顶点,AB=6cm,AD=2cm,动点P、Q分别从点A、C同时出发,点P以2cm/s的速度向终点B移动,点Q以1cm/s的速度向终点D移动,当有一点到达终点时,另一点也停止运动.设运动时间为t求:
(1)当t=1s时,求四边形BCQP的面积?
(2)当t为何值时,点P与点Q之间的距离为cm?5
(3)当t=时,以点P,Q,D为顶点的三角形是等腰三角形.发布:2025/6/14 20:30:2组卷:182引用:4难度:0.3 -
2.综合与实践
问题情景:数学活动课上,老师出示了一个问题:如图①,在▱ABCD中,BE⊥AD,垂足为E,F为CD的中点,连接EF,BF,试猜想EF与BF的数量关系,并加以证明;
独立思考:(1)请解答老师提出的问题;
实践探究:(2)希望小组受此问题的启发,将▱ABCD沿着BF(F为CD的中点)所在直线折叠,如图②,点C的对应点为C',连接DC'并延长交AB于点G,请判断AG与BG的数量关系,并加以证明;
问题解决:(3)智慧小组突发奇想,将▱ABCD沿过点B的直线折叠,如图③,点A的对应点A′,使A'B⊥CD于点H,连接A'M,交CD于点N,该小组提出一个问题:若此▱ABCD的面积为20,边长AB=5,BC=,求图中阴影部分(四边形BHNM)的面积.请你思考此问题,直接写出结果.833发布:2025/6/14 19:30:1组卷:200引用:1难度:0.1 -
3.(1)问题引入
如图1,点F是正方形ABCD边CD上一点,连接AF,将△ADF绕点A顺时针旋转90°与△ABG重合(D与B重合,F与G重合,此时点G,B,C在一条直线上),∠GAF的平分线交BC于点E,连接EF,判断线段EF与GE之间有怎样的数量关系,并说明理由.
(2)知识迁移
如图2,在四边形ABCD中,∠ADC+∠B=180°,AB=AD,E,F分别是边BC,CD延长线上的点,连接AE,AF,且∠BAD=2∠EAF,试写出线段BE,EF,DF之间的数量关系,并说明理由.
(3)实践创新
如图3,在四边形ABCD中,∠ABC=90°,AC平分∠DAB,点E在AB上,连接DE,CE,且∠DAB=∠DCE=60°,若DE=a,AD=b,AE=c,求BE的长.(用含a,b,c的式子表示)发布:2025/6/14 19:0:1组卷:1975引用:4难度:0.2