2020年10月,中共中央办公厅、国务院办公厅印发了《关于全面加强和改进新时代学校体育工作的意见》,各地各校积极开展中小学健康促进行动,发挥以体育智、以体育心功能.某中学初三年级对全体男生进行了立定跳远测试,计分规则如表:
立定跳远(厘米) | [200,205) | [205,210) | [210,215) | [215,220) | [220,225) | [225,230) |
得分 | 3.5 | 4 | 4.5 | 5 | 5.5 | 6 |

(1)现从这100名男生中,任意抽取2人,求两人得分之和不大于7.5分的概率(结果用最简分数表示);
(2)若该校初三年级所有男生的立定跳远成绩X服从正态分布N(215,σ2).现在全年级所有初三男生中任取3人,记立定跳远成绩在215厘米以上(含215厘米)的人数为ξ,求随机变量ξ的分布列和数学期望;
(3)若本市25000名初三男生在某次测试中的立定跳远成绩服从正态分布.考生甲得知他的实际成绩为223厘米,而考生乙告诉考生甲:“这次测试平均成绩为210厘米,218厘米以上共有570人”,请结合统计学知识帮助考生甲辨别考生乙信息的真伪.
附:若随机变量X服从正态分布N(μ,σ2),则P(μ-σ<X<μ+σ)=0.6826,P(μ-2σ<X<μ+2σ)=0.9544,P(μ-3σ<X<μ+3σ)=0.9974.
【考点】离散型随机变量的均值(数学期望).
【答案】见试题解答内容
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/4/20 14:35:0组卷:106引用:3难度:0.5
相似题
-
1.某市举行“中学生诗词大赛”,分初赛和复赛两个阶段进行,规定:初赛成绩大于90分的具有复赛资格,某校有800名学生参加了初赛,所有学生的成绩均在区间(30,150]内,其频率分布直方图如图.
(Ⅰ)求获得复赛资格的人数;
(Ⅱ)从初赛得分在区间(110,150]的参赛者中,利用分层抽样的方法随机抽取7人参加学校座谈交流,那么从得分在区间(110,130]与(130,150]各抽取多少人?
(Ⅲ)从(Ⅱ)抽取的7人中,选出3人参加全市座谈交流,设X表示得分在区间(130,150]中参加全市座谈交流的人数,求X的分布列及数学期望E(X).发布:2024/12/29 13:30:1组卷:134引用:7难度:0.5 -
2.设离散型随机变量X的分布列如表:
X 1 2 3 4 5 P m 0.1 0.2 n 0.3 发布:2024/12/29 13:0:1组卷:201引用:6难度:0.5 -
3.从4名男生和2名女生中任选3人参加演讲比赛,用X表示所选3人中女生的人数,则E(X)为( )
发布:2024/12/29 13:30:1组卷:139引用:6难度:0.7