某市为提升中学生的环境保护意识,举办了一次“环境保护知识竞赛”,分预赛和复赛两个环节,预赛成绩排名前三百名的学生参加复赛.已知共有12000名学生参加了预赛,现从参加预赛的全体学生中随机地抽取100人的预赛成绩作为样本,得到如图频率分布直方图:

(1)规定预赛成绩不低于80分为优良,若从上述样本中预赛成绩不低于60分的学生中随机地抽取2人,求至少有1人预赛成绩优良的概率,并求预赛成绩优良的人数的数学期望;
(2)由频率分布直方图可认为该市全体参加预赛学生的预赛成绩Z服从正态分布N(μ,σ2),其中μ可近似为样本中的100名学生预赛成绩的平均值(同一组数据用该组区间的中点值代替),且σ2=362,已知小明的预赛成绩为91分,利用该正态分布,估计小明是否有资格参加复赛?
(3)复赛规则如下:①每人的复赛初始分均为100分;②参赛学生可在开始答题前自行决定答题数量n,每一题都需要“花”掉(即减去)一定分数来获取答题资格,规定答第k题时“花”掉的分数为0.2k(k=1,2,…,n);③每答对一题加2分,答错既不加分也不减分;④答完n题后参赛学生的最终分数即为复赛成绩,已知参加复赛的学生甲答对每道题的概率均为0.8,且每题答对与否都相互独立.若学生甲期望获得最佳的复赛成绩,则他的答题数量n应为多少?
附:若Z∼N(μ,σ2),则P(μ-σ<Z<μ+σ)≈0.6827,P(μ-2σ<Z<μ+2σ)≈0.9545,P(μ-3σ<Z<μ+3σ)≈0.9973;362≈19.
362
≈
19
【考点】离散型随机变量的均值(数学期望).
【答案】见试题解答内容
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/5/2 8:0:9组卷:209引用:4难度:0.4
相似题
-
1.某市举行“中学生诗词大赛”,分初赛和复赛两个阶段进行,规定:初赛成绩大于90分的具有复赛资格,某校有800名学生参加了初赛,所有学生的成绩均在区间(30,150]内,其频率分布直方图如图.
(Ⅰ)求获得复赛资格的人数;
(Ⅱ)从初赛得分在区间(110,150]的参赛者中,利用分层抽样的方法随机抽取7人参加学校座谈交流,那么从得分在区间(110,130]与(130,150]各抽取多少人?
(Ⅲ)从(Ⅱ)抽取的7人中,选出3人参加全市座谈交流,设X表示得分在区间(130,150]中参加全市座谈交流的人数,求X的分布列及数学期望E(X).发布:2024/12/29 13:30:1组卷:134引用:7难度:0.5 -
2.设离散型随机变量X的分布列如表:
X 1 2 3 4 5 P m 0.1 0.2 n 0.3 发布:2024/12/29 13:0:1组卷:199引用:6难度:0.5 -
3.从4名男生和2名女生中任选3人参加演讲比赛,用X表示所选3人中女生的人数,则E(X)为( )
发布:2024/12/29 13:30:1组卷:139引用:6难度:0.7