如图,抛物线y=24x2+bx+c与x轴交于点A(-2,0)、B,与y轴交于点C,抛物线的对称轴为直线x=2,点D是抛物线的顶点.
(1)求抛物线的解析式;
(2)过点A作AF⊥AD交对称轴于点F,在直线AF下方对称轴右侧的抛物线上有一动点P,过点P作PQ∥y轴交直线AF于点Q,过点P作PE⊥DF交于点E,求PQ+PE最大值及此时点P的坐标;
(3)将原抛物线沿着x轴正方向平移,使得新抛物线经过原点,点M是新抛物线上一点,点N是平面直角坐标系内一点,是否存在以B、C、M、N为顶点的四边形是以BC为对角线的菱形,若存在,求所有符合条件的点N的坐标.

y
=
2
4
x
2
+
bx
+
c
A
(
-
2
,
0
)
x
=
2
【考点】二次函数综合题.
【答案】(1)y=x2-x-;
(2)PQ+PE最大值为6,此时点P的坐标为(3,0);
(3)存在,点N的坐标为(3+3,-6-)或(3-3,6-).
2
4
3
2
2
(2)PQ+PE最大值为6
2
2
(3)存在,点N的坐标为(3
2
15
2
4
2
15
2
4
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2025/5/22 8:0:2组卷:575引用:3难度:0.3
相似题
-
1.如图,已知直线y=kx-6与抛物线y=ax2+bx+c相交于A,B两点,且点A(1,-4)为抛物线的顶点,点B在x轴上.
(1)求抛物线的解析式;
(2)在(1)中抛物线的第二象限图象上是否存在一点P,使△POB与△POC全等?若存在,求出点P的坐标;若不存在,请说明理由;
(3)若点Q是y轴上一点,且△ABQ为直角三角形,求点Q的坐标.发布:2025/6/25 8:30:1组卷:6971引用:21难度:0.1 -
2.给定一个函数,如果这个函数的图象上存在一个点,它的横、纵坐标相等,那么这个点叫做该函数的不变点.
(1)一次函数y=3x-2的不变点的坐标为.
(2)二次函数y=x2-3x+1的两个不变点分别为点P、Q(P在Q的左侧),将点Q绕点P顺时针旋转90°得到点R,求点R的坐标.
(3)已知二次函数y=ax2+bx-3的两个不变点的坐标为A(-1,-1)、B(3,3).
①求a、b的值.
②如图,设抛物线y=ax2+bx-3与线段AB围成的封闭图形记作M.点C为一次函数y=-x+m的不变点,以线段AC为边向下作正方形ACDE.当D、E两点中只有一个点在封闭图形M的内部(不包含边界)时,求出m的取值范围.13发布:2025/6/25 7:30:2组卷:348引用:2难度:0.1 -
3.如图,已知抛物线经过A(1,0),B(0,3)两点,对称轴是直线x=-1.
(1)求抛物线对应的函数关系式;
(2)动点Q从点O出发,以每秒1个单位长度的速度在线段OA上运动,同时动点M从O点出发以每秒3个单位长度的速度在线段OB上运动,过点Q作x轴的垂线交线段AB于点N,交抛物线于点P,设运动的时间为t秒.
①当t为何值时,四边形OMPQ为矩形;
②△AON能否为等腰三角形?若能,求出t的值;若不能,请说明理由.发布:2025/6/25 6:0:1组卷:1079引用:59难度:0.5