当前位置:
试题详情
设点M和N分别是椭圆C:x2a2+y2=1(a>0)上不同的两点,线段MN最长为4.
(1)求椭圆C的标准方程;
(2)若直线MN过点Q(0,2),且OM•ON>0,线段MN的中点为P,求直线OP的斜率的取值范围.
x
2
a
2
+
y
2
OM
•
ON
【答案】(1).
(2).
x
2
4
+
y
2
=
1
(2)
(
-
3
6
,-
1
8
)
∪
(
1
8
,
3
6
)
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/5/23 20:38:36组卷:985引用:3难度:0.5
相似题
-
1.已知椭圆
=1(a>b>0)的一个焦点为F(2,0),椭圆上一点P到两个焦点的距离之和为6,则该椭圆的方程为( )x2a2+y2b2发布:2024/12/29 12:30:1组卷:12引用:2难度:0.7 -
2.已知椭圆C的两焦点分别为
、F1(-22,0),长轴长为6.F2(22,0)
(1)求椭圆C的标准方程;
(2)求以椭圆的焦点为顶点,以椭圆的顶点为焦点的双曲线的方程.发布:2024/12/29 11:30:2组卷:442引用:6难度:0.8 -
3.阿基米德(公元前287年-公元前212年)不仅是著名的物理学家,也是著名的数学家,他利用“逼近法”得到椭圆的面积除以圆周率等于椭圆的长半轴长与短半轴长的乘积.若椭圆C的对称轴为坐标轴,焦点在x轴上,且椭圆C的离心率为
,面积为8π,则椭圆C的方程为( )32发布:2024/12/29 12:0:2组卷:229引用:7难度:0.5