如图,四边形OABC是矩形,点A、C在坐标轴上,△ODE是由△OCB绕点O顺时针旋转90°得到的,点D在x轴上,直线BD交y轴于点F,交OE于点H,线段BC、OC的长是2和4;
(1)求直线BD的表达式;
(2)求△OFH的面积;
(3)点M在坐标轴上,平面内是否存在点N,使以点D、F、M、N为顶点的四边形是矩形?若存在,请直接写出点N的坐标;若不存在,请说明理由.

【考点】一次函数综合题.
【答案】见试题解答内容
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:762引用:2难度:0.2
相似题
-
1.【模型建立】
(1)如图1,等腰Rt△ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过点A作AD⊥ED于点D,过点B作BE⊥ED于点E,求证:△BEC≌△CDA;
【模型应用】
(2)如图2,已知直线l1:y=x+3与x轴交于点A,与y轴交于点B,将直线l1绕点A逆时针旋转45°至直线l2;求直线l2的函数表达式;32
(3)如图3,平面直角坐标系内有一点B(3,-4),过点B作BA⊥x轴于点A、BC⊥y轴于点C,点P是线段AB上的动点,点D是直线y=-2x+1上的动点且在第四象限内.试探究△CPD能否成为等腰直角三角形?若能,求出点D的坐标,若不能,请说明理由.发布:2025/6/10 12:0:6组卷:509引用:10难度:0.2 -
2.在平面直角坐标系xOy中,对于图形Q和∠P,给出如下定义:若图形Q上的所有的点都在∠P的内部或∠P的边上,则∠P的最小值称为点P对图形Q的可视度.如图1,∠AOB的度数为点O对线段AB的可视度.
(1)已知点N(2,0),在点M1(0,),M2(1,233),M3(2,3)中,对线段ON的可视度为60°的点是 .3
(2)如图2,已知点A(-2,2),B(-2,-2),C(2,-2),D(2,2),E(0,4).
①直接写出点E对四边形ABCD的可视度为 °;
②已知点F(a,4),若点F对四边形ABCD的可视度为45°,求a的值.
③直线y=-x+b与x轴、y轴分别交于点S、T,若线段ST上存在点G,使得点G对四边形ABCD的可视度不小于45°,则b的取值范围是 .发布:2025/6/10 13:30:2组卷:257引用:2难度:0.1 -
3.如图,在平面直角坐标系中,直线l1的解析式为y=x,直线l2的解析式为
,与x轴、y轴分别交于点A、点B,直线l1与l2交于点C.y=-12x+3
(1)若直线l2上存在点P(不与B重合),满足S△COP=S△COB,求出点P的坐标;
(2)在y轴右侧有一动直线平行于y轴,分别与l1,l2交于点M、N,且点M在点N的下方,y轴上是否存在点Q,使△MNQ为等腰直角三角形?若存在,请直接写出满足条件的点Q的坐标;若不存在,请说明理由.发布:2025/6/10 13:30:2组卷:533引用:2难度:0.1