由于新冠疫情的影响,口罩需求量急剧上升,经过连续两次价格的上调,口罩的价格由每包10元涨到了每包14.4元.
(1)求出这两次价格上调的平均增长率;
(2)在有关部门调控下,口罩价格还是降到了每包10元,而且调查发现,定价为每包10元时,一天可以卖出30包,每降价1元,可以多卖出5包,当销售额为315元时,且让顾客获得更大的优惠,应该降价多少元?
【考点】一元二次方程的应用.
【答案】见试题解答内容
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2025/6/12 8:0:1组卷:2928引用:15难度:0.6
相似题
-
1.某商店准备销售一种多功能旅行背包,计划从厂家以每个30元的价格进货,经过市场发现当每个背包的售价为40元时,月均销量为280个,售价每增长1元,月均销量就相应减少10个.
(1)若使这种背包的月均销量不低于130个,每个背包售价应不高于元;
(2)在(1)的条件下,当该这种书包销售单价为多少元时,销售利润是3120元?
(3)这种书包的销售利润有可能达到3700元吗?若能,请求出此时的销售单价;若不能,请说明理由.发布:2025/6/13 9:0:1组卷:356引用:5难度:0.6 -
2.如图,某中学准备建一个面积为150m2的矩形花园,它的一边利用图书馆的后墙,另外三边所围的栅栏的总长度是40m,后墙MN最长可利用25米.求垂直于墙的边AB的长度?
发布:2025/6/13 9:30:1组卷:53引用:1难度:0.5 -
3.《代数学》中记载,形如x2+8x=33的方程,求正数解的几何方法是:“如图1,先构造一个面积为x2的正方形,再以正方形的边长为一边向外构造四个面积为2x的矩形,得到大正方形的面积为33+16=49,则该方程的正数解为7-4=3.”小聪按此方法解关于x的方程x2+10x+m=0时,构造出如图2所示的图形,已知阴影部分的面积为50,则该方程的正数解是 .
发布:2025/6/13 9:30:1组卷:501引用:8难度:0.5