已知无穷数列{an}中,a1,a2,…,am是以10为首项,以-2为公差的等差数列;am+1,am+2,…,a2m是以12为首项,以12为公比的等比数列(m≥3,m∈N*);并且对一切正整数n,都有an+2m=an成立.
(1)当m=3时,请依次写出数列{an}的前12项;
(2)若a23=-2,试求m的值;
(3)设数列{an}的前n项和为Sn,问是否存在m的值,使得S128m+3≥2008成立?若存在,求出m的值;若不存在,请说明理由.
1
2
1
2
【考点】数列与不等式的综合.
【答案】见试题解答内容
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/4/20 14:35:0组卷:41引用:3难度:0.1
相似题
-
1.已知等比数列{xn}的各项为不等于1的正数,数列{yn}满足
(a>0,且a≠1),设y3=18,y6=12.ynlogaxn=2
(1)数列{yn}的前多少项和最大,最大值是多少?
(2)试判断是否存在自然数M,使得n>M时,xn>1恒成立,若存在,求出最小的自然数M,若不存在,请说明理由.发布:2025/1/14 8:0:1组卷:11引用:1难度:0.1 -
2.古印度数学家婆什伽罗在《丽拉沃蒂》一书中提出如下问题:某人给一个人布施,初日施2子安贝(古印度货币单位),以后逐日倍增,问一月共施几何?在这个问题中,以一个月31天计算,记此人第n日布施了an子安贝(其中1≤n≤31,n∈N*),数列{an}的前n项和为Sn.若关于n的不等式
恒成立,则实数t的取值范围为( )Sn-62<a2n+1-tan+1发布:2024/12/9 14:30:1组卷:54引用:3难度:0.6 -
3.已知等比数列{an}的前n项和为Sn,
,则使得不等式Sn+1+1=4an(n∈N*)成立的正整数m的最大值为( )am+am+1+…+am+k-am+1Sk<2023(k∈N*)发布:2024/12/7 11:0:2组卷:224引用:4难度:0.5