(理科做)已知圆O:x2+y2=4,点M(1,a)且a>0.
(I)若过点M有且只有一条直线l与圆O相切,求a的值及直线l的斜率,
(II)若a=2,过点M的两条弦AC、BD互相垂直,记圆心O到弦AC、BD的距离分别为d1、d2•
①证明d21+d22为定值;
②求|AC|+|BD|的最大值.
2
d
2
1
d
2
2
【考点】直线和圆的方程的应用;点与圆的位置关系.
【答案】(Ⅰ)a=时,;
(Ⅱ)①设圆心O在AC上的射影为R,则d1=|OR|,圆心O在BD上的射影为Q,d2=|OQ|,又过点M的两条弦AC、BD互相垂直,
∴四边形OQMR为矩形,
∴+=OM2=+12=3(定值).
②2.
3
k
切线
=
-
3
3
(Ⅱ)①设圆心O在AC上的射影为R,则d1=|OR|,圆心O在BD上的射影为Q,d2=|OQ|,又过点M的两条弦AC、BD互相垂直,
∴四边形OQMR为矩形,
∴
d
2
1
d
2
2
(
2
)
2
②2
5
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:56引用:1难度:0.1
相似题
-
1.已知圆C1:(x-4)2+(y-2)2=20与y轴交于O,A两点,圆C2过O,A两点,且直线C2O与圆C1相切;
(1)求圆C2的方程;
(2)若圆C2上一动点M,直线MO与圆C1的另一交点为N,在平面内是否存在定点P使得PM=PN始终成立,若存在求出定点坐标,若不存在,说明理由.发布:2024/10/16 15:0:1组卷:547引用:7难度:0.3 -
2.已知直角坐标系xOy中,圆O:x2+y2=16.
①过点P(4,2)作圆O的切线m,求m的方程;
②直线l:y=kx+b与圆O交于点M,N两点,已知T(8,0),若x轴平分∠MTN,证明:不论k取何值,直线l与x轴的交点为定点,并求出此定点坐标.发布:2024/9/25 3:0:1组卷:147引用:2难度:0.6 -
3.若直线ax+y=0始终平分圆x2+y2-2ax+2ay+2a2+a-1=0的周长,则a的值为( )
发布:2024/12/8 10:30:3组卷:357引用:2难度:0.8