2022年湖北省襄阳五中高考数学适应性试卷(三)
发布:2024/4/20 14:35:0
一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
-
1.已知集合M={x∈Z|x2-2x≤0},N={x|x≥a},若M∩N有且只有2个元素,则a的取值范围是( )
组卷:115引用:3难度:0.8 -
2.一支田径队有男运动员48人,女运动员36人,用分层抽样的方法从全体运动员中抽取一个容量为7的样本,抽出的男运动员平均身高为177.5cm,抽出的女运动员平均身高为168.4cm,估计该田径队运动员的平均身高是( )
组卷:177引用:4难度:0.8 -
3.已知双曲线
=1(a>0,b>0)的左顶点与抛物线y2=2px(p>0)的焦点的距离为4,且双曲线的一条渐近线与抛物线的准线的交点坐标为(-2,-1),则双曲线的方程为( )x2a2-y2b2组卷:591引用:4难度:0.6 -
4.区块链作为一种新型的技术,已经被应用于许多领域.在区块链技术中,某个密码的长度设定为512B,则
密码一共有2512种可能,为了破解该密码,最坏的情况需要进行2512次运算.现在有一台计算机,每秒能进行1.25×1013次运算,那么在最坏的情况下,这台计算机破译该密码所需时间大约为( )
(参考数据:lg2≈0.3,)10≈3.16组卷:299引用:11难度:0.5 -
5.如图,体积为V的大球内有4个小球,每个小球的球面过大球球心且与大球球面有且只有一个交点,4个小球的球心是以大球球心为中心的正方形的4个顶点.V1为小球相交部分(图中阴影部分)的体积,V2为大球内、小球外的图中黑色部分的体积,则下列关系中正确的是( )
组卷:724引用:8难度:0.5 -
6.在数列{an}中,a1=1,
,若am+am+1+⋯+am+9=248,则m=( )anan+1=2n组卷:192引用:2难度:0.5 -
7.过点P(1,2)作曲线C:
的两条切线,切点分别为A,B,则直线AB的方程为( )y=4x组卷:228引用:7难度:0.7
四、解答题:本题共6小题,共70分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.
-
21.如图,椭圆的中心为原点O,长轴在x轴上,离心率
,过左焦点F1作x轴的垂线交椭圆于A、A′两点,|AA′|=4.e=22
(Ⅰ)求该椭圆的标准方程;
(Ⅱ)取平行于y轴的直线与椭圆相交于不同的两点P、P′,过P、P′作圆心为Q的圆,使椭圆上的其余点均在圆Q外.求△PP'Q的面积S的最大值,并写出对应的圆Q的标准方程.组卷:663引用:7难度:0.1 -
22.函数f(x)=ex+asinx,x∈(-π,+∞).
(1)求证:当a=1时,f(x)存在唯一极小值点x0,且-1<f(x0)<0;
(2)是否存在实数a使f(x)在(-π,+∞)上只有一个零点,若存在,求出a的范围;若不存在,说明理由.组卷:169引用:2难度:0.2