2019-2020学年陕西省宝鸡市千阳中学高二(下)期末数学试卷(理科)
发布:2024/4/20 14:35:0
一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的A、B、C、D的四个选项中,只有一个选项是符合题目要求的,请将正确答案的字母代号涂到答题卡上.
-
1.“∵四边形ABCD为矩形,∴四边形ABCD的对角线相等”,补充以上推理的大前提为( )
组卷:238引用:23难度:0.9 -
2.复数
的实部是( )4+3i1+2i组卷:128引用:19难度:0.9 -
3.若函数f(x)=2x2-1的图象上一点(1,1)及邻近一点(1+△x,1+△y),则
等于( )△y△x组卷:376引用:12难度:0.9 -
4.实数a,b,c不全为0的条件为( )
组卷:42引用:6难度:0.9 -
5.已知曲线
的一条切线的斜率为y=x24,则切点的横坐标为( )12组卷:2635引用:34难度:0.9 -
6.已知n为正偶数,用数学归纳法证明1-
+12-13+…-14=2(1n+…+1n+2+1n+4)时,若已假设n=k(k≥2为偶数)时命题为真,则还需要用归纳假设再证( )12n组卷:123引用:12难度:0.7 -
7.
与∫10xdx的大小关系是( )∫10x2dx组卷:3引用:1难度:0.7
三、解答题:本大题共6小题,共74分.解答应写出说明文字.演算式.证明步骤.
-
21.观察所给三角形数表,假设第n行的第二个数为
.an(n≥2,n∈N*)
(1)求an的通项公式;
(2)用数学归纳法证明:12+22+32+……+n2=;16n(n+1)(2n+1)
(3)求上述数列的前n项和Sn.组卷:13引用:1难度:0.4 -
22.设直线l:y=g(x),曲线S:y=F(x).若直线l与曲线S同时满足下列两个条件:①直线l与曲线S相切且至少有两个切点;②对任意x∈R都有g(x)≥F(x).则称直线l为曲线S的“上夹线”.
(Ⅰ)已知函数f(x)=x-2sinx.求证:y=x+2为曲线f(x)的“上夹线”.
(Ⅱ)观察如图:
根据如图,试推测曲线S:y=mx-nsinx(n>0)的“上夹线”的方程,并给出证明.组卷:325引用:6难度:0.1