北师大新版八年级上册《第1章 勾股定理》2021年单元测试卷(2)
发布:2024/4/20 14:35:0
一、选择题(本题共计8小题,每题3分,共计24分,)
-
1.下列各组数为勾股数的是( )
组卷:284引用:22难度:0.9 -
2.如图1,是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的,若AC=12,BC=7,将四个直角三角形中边长为12的直角边分别向外延长一倍,得到如图2所示的“数学风车”,则这个风车的外围周长是( )
组卷:387引用:2难度:0.5 -
3.若△ABC的三边a、b、c满足(a-b)2+|a2+b2-c2|=0,则△ABC是( )
组卷:9653引用:36难度:0.5 -
4.如图,长方体的透明玻璃鱼缸,假设其长AD=80cm,高AB=60 cm,水深为AE=40 cm,在水面上紧贴内壁G处有一鱼饵,G在水面线EF上,且EG=60 cm;一小虫想从鱼缸外的A点沿壁爬进鱼缸内G处吃鱼饵,则小动物爬行的最短路线长为( )
组卷:636引用:4难度:0.7 -
5.下列命题:
①如果a、b、c为一组勾股数,那么4a、4b、4c仍是勾股数;
②如果直角三角形的两边是3,4,那么斜边必是5;
③如果一个三角形的三边是12,25,21,那么此三角形必是直角三角形;
④一个等腰直角三角形的三边是a、b、c,(a>b=c),那么a2:b2:c2=2:1:1.
其中正确的是( )组卷:854引用:22难度:0.7 -
6.一职工下班后以50米/分的速度骑自行车沿着东西马路向东走了5.6分,又沿南北马路向南走了19.2分到家,则他的家离公司距离为( )米.
组卷:795引用:2难度:0.9 -
7.历史上对勾股定理的一种证法采用了下列图形:其中两个全等的直角三角形边AE、EB在一条直线上.证明中用到的面积相等关系是( )
组卷:1042引用:15难度:0.7 -
8.如图,在△ABC中,∠ABC=90°,D为BC的中点,点E在AB上,AD,CE交于点F,AE=EF=4,FC=9,则cos∠ACB的值为( )
组卷:4481引用:8难度:0.3
三、解答题(本题共计8小题,共计69分,)
-
24.四边形ABCD是正方形,E、F分别是DC和CB的延长线上的点,且DE=BF,连接AE、AF、EF.
(1)求证:△ADE≌△ABF;
(2)若BC=8,DE=6,求△AEF的面积.组卷:1945引用:8难度:0.7 -
25.如图1是著名的赵爽弦图,由四个全等的直角三角形拼成,用它可以证明勾股定理,思路是:大正方形的面积有两种求法,一种是等于c2,另一种是等于四个直角三角形与一个小正方形的面积之和,即
,从而得到等式c2=12ab×4+(b-a)2,化简便得结论a2+b2=c2.这里用两种求法来表示同一个量从而得到等式或方程的方法,我们称之为“双求法”.现在,请你用“双求法”解决下面两个问题12ab×4+(b-a)2
(1)如图2,在Rt△ABC中,∠ACB=90°,CD是AB边上的高,AC=3,BC=4,求CD的长度.
(2)如图3,在△ABC中,AD是BC边上的高,AB=4,AC=5,BC=6,设BD=x,求x的值.组卷:1814引用:11难度:0.5