试卷征集
加入会员
操作视频
当前位置: 试卷中心 > 试卷详情

2022-2023学年辽宁省葫芦岛六中九年级(上)段考数学试卷(三)

发布:2024/4/20 14:35:0

一、选择题(每小题3分,共30分)

  • 1.下列四个图形中,是中心对称图形的是(  )

    组卷:11引用:2难度:0.9
  • 2.在一次比赛前,教练预言说:“这场比赛我们队有60%的机会获胜”,则下列说法中与“有60%的机会获胜”的意思接近的是(  )

    组卷:447引用:17难度:0.9
  • 3.如果弧所对的圆心角的度数增加1°,弧的半径为R,则它的弧长增加(  )

    组卷:151引用:2难度:0.7
  • 4.如图,⊙O中,直径CD⊥弦AB,则下列结论①△ABD是正△;②∠BOC=2∠ADC;③∠BOC=60°;④AC∥BD,正确的个数有(  )

    组卷:102引用:3难度:0.9
  • 5.如图,△ODC是由△OAB绕点O顺时针旋转31°后得到的图形,若点D恰好落在AB上,且∠AOC的度数为100°,则∠DOB的度数是(  )

    组卷:6395引用:94难度:0.7
  • 6.若圆锥的侧面展开图是半径为a的半圆,则圆锥的高为(  )

    组卷:57引用:5难度:0.9
  • 7.如图,AB是⊙O的弦,AC是⊙O的切线,A为切点,BC经过圆心,∠B=20°,则∠C的度数为(  )

    组卷:94引用:4难度:0.7
  • 8.如图用圆心角为120°,半径为6的扇形围成一个圆锥的侧面(接缝忽略不计),则这个圆锥的高是(  )

    组卷:92引用:4难度:0.9

七、解答题(本题12分)

  • 25.如图1,在等边△ABC中,点D,E分别在边AB,AC上,AD=AE,连接BE,CD,点M、N、P分别是BE、CD、BC的中点.
    (1)观察猜想:图1中,△PMN的形状是

    (2)探究证明:把△ADE绕点A逆时针方向旋转到图2的位置,△PMN的形状是否发生改变?并说明理由;
    (3)拓展延伸:把△ADE绕点A在平面内自由旋转,若AD=1,AB=3,请直接写出△PMN的周长的最大值.

    组卷:1242引用:6难度:0.3

八、解答题(本题14分)

  • 26.如图1,已知抛物线y=-x2+bx+c与x轴交于A(-1,0),B(3,0)两点,与y轴交于C点,点P是抛物线上在第一象限内的一个动点,且点P的横坐标为t.
    (1)求抛物线的表达式;
    (2)设抛物线的对称轴为l,l与x轴的交点为D.在直线l上是否存在点M,使得四边形CDPM是平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.
    (3)如图2,连接BC,PB,PC,设△PBC的面积为S.
    ①求S关于t的函数表达式;
    ②求P点到直线BC的距离的最大值,并求出此时点P的坐标.

    组卷:3629引用:8难度:0.3
深圳市菁优智慧教育股份有限公司
粤ICP备10006842号公网安备44030502001846号
©2010-2025 jyeoo.com 版权所有
APP开发者:深圳市菁优智慧教育股份有限公司| 应用名称:菁优网 | 应用版本:5.0.7 |隐私协议|第三方SDK|用户服务条款
广播电视节目制作经营许可证|出版物经营许可证|网站地图
本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正