试卷征集
加入会员
操作视频
当前位置: 试卷中心 > 试卷详情

2021-2022学年河北省保定市高一(上)期末数学试卷

发布:2024/11/11 13:30:1

一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.

  • 1.命题:“∀x>0,2lnx+2x>0”的否定是(  )

    组卷:95引用:5难度:0.9
  • 2.已知集合M={1,2,3},N={3,4},全集I={1,2,3,4,5},则M∪(∁IN)=(  )

    组卷:45引用:4难度:0.8
  • 3.-660°=(  )

    组卷:582引用:5难度:0.9
  • 4.已知
    cos
    π
    -
    θ
    =
    2
    5
    ,则cos(-θ)=(  )

    组卷:578引用:7难度:0.8
  • 5.若函数f(x)=2x+a•2-x-x为R上的奇函数,则实数a的值为(  )

    组卷:331引用:5难度:0.8
  • 6.函数f(x)=log2(2x)•log2(4x)的最小值为(  )

    组卷:253引用:4难度:0.6
  • 7.已知a>0,b>0,且满足2a+b=ab,则a+b的最小值为(  )

    组卷:862引用:6难度:0.7

四、解答题:本题共6小题,共70分.解答应写出必要的文字说明、证明过程及演算步骤.

  • 21.如图,欲在山林一侧建矩形苗圃,苗圃左侧为林地,三面通道各宽2m,苗圃与通道之间由栅栏隔开.
    (1)若苗圃面积5000m2,求栅栏总长的最小值;
    (2)若苗圃带通道占地总面积为5000m2,求苗圃面积的最大值.

    组卷:29引用:3难度:0.5
  • 22.已知函数
    f
    x
    =
    lo
    g
    2
    4
    x
    +
    1
    +
    ax
    是偶函数.
    (1)求实数a的值;
    (2)若函数g(x)=22x+2-2x+m•2f(x)的最小值为-3,求实数m的值;
    (3)当k为何值时,讨论关于x的方程[f(x)-1+k][f(x)-1-4k]+2k2+k=0的根的个数.(请写出详细解答过程)

    组卷:496引用:5难度:0.2
深圳市菁优智慧教育股份有限公司
粤ICP备10006842号公网安备44030502001846号
©2010-2025 jyeoo.com 版权所有
APP开发者:深圳市菁优智慧教育股份有限公司| 应用名称:菁优网 | 应用版本:5.0.7 |隐私协议|第三方SDK|用户服务条款
广播电视节目制作经营许可证|出版物经营许可证|网站地图
本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正