试卷征集
加入会员
操作视频
当前位置: 试卷中心 > 试卷详情

2022-2023学年山东省泰安市新泰一中北校高三(上)期中数学试卷

发布:2024/4/20 14:35:0

一、单选题

  • 1.复数z满足
    z
    =
    2
    i
    1
    -
    i
    ,则复数z的虚部为(  )

    组卷:224引用:6难度:0.9
  • 2.已知集合
    A
    =
    {
    x
    |
    1
    9
    3
    x
    9
    }
    ,集合B={x|log3x<1},则A∩B=(  )

    组卷:243引用:8难度:0.8
  • 3.已知角α的终边经过点P(1,3),则
    sinα
    +
    cosα
    sinα
    -
    cosα
    =(  )

    组卷:493引用:3难度:0.7
  • 4.已知m,n表示两条不同的直线,α,β,γ表示三个不同的平面,给出下列四个命题:
    ①α∩β=m,n⊂α,n⊥m,则α⊥β;
    ②α⊥β,α∩γ=m,β∩γ=n,则m⊥n;
    ③α⊥β,α⊥γ,β∩γ=m,则m⊥α;
    ④m⊥α,n⊥β,m⊥n,则α⊥β
    其中正确命题的序号为(  )

    组卷:59引用:3难度:0.5
  • 5.已知数列{an}是等差数列,数列{bn}是等比数列,
    a
    7
    +
    a
    9
    =
    4
    π
    3
    ,且b2b6b10=8,
    a
    3
    +
    a
    8
    +
    a
    13
    b
    4
    b
    8
    -
    1
    =(  )

    组卷:199引用:8难度:0.7
  • 6.已知正实数a,b满足a+b+3=ab,若a+b≥x2-x对任意a,b恒成立,则实数x的取值范围是(  )

    组卷:14引用:2难度:0.6
  • 7.在△ABC中,角A,B,C的对边分别为a,b,c.若a=2,acosB+bcosA+
    2
    ccosC=0,△ABC的面积为2
    2
    ,则
    CA
    CB
    方向上的投影向量为(  )

    组卷:248引用:4难度:0.5

四、解答题

  • 21.已知数列{an}是等差数列,其前n项和为Sn,且满足a1+a5=10,S4=16;数列{bn}满足:b1+3b2+32b3+…+3n-1bn=
    n
    3
    ,(n∈N*).
    (Ⅰ)求数列{an},{bn}的通项公式;
    (Ⅱ)设cn=anbn+
    1
    a
    n
    a
    n
    +
    1
    ,求数列{cn}的前n项和Tn

    组卷:138引用:1难度:0.5
  • 22.已知函数f(x)=ex-alnx,a∈R.
    (1)当a=0时,若曲线y=f(x)与直线y=kx相切,求k的值;
    (2)当a=e时,证明:f(x)≥e;
    (3)若对任意x∈(0,+∞),不等式f(x)-alnx>2a•ln(2a)恒成立,求a的取值范围.

    组卷:182引用:4难度:0.2
深圳市菁优智慧教育股份有限公司
粤ICP备10006842号公网安备44030502001846号
©2010-2025 jyeoo.com 版权所有
APP开发者:深圳市菁优智慧教育股份有限公司| 应用名称:菁优网 | 应用版本:5.0.7 |隐私协议|第三方SDK|用户服务条款
广播电视节目制作经营许可证|出版物经营许可证|网站地图
本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正