2022-2023学年黑龙江省齐齐哈尔市部分地区高三(上)期末数学试卷
发布:2024/4/20 14:35:0
一、单选题(每题5分,共40分)
-
1.已知集合A={x|x=3n+2,n∈N},B={x|2<x<14},则集合A∩B中元素的个数为( )
组卷:95引用:2难度:0.8 -
2.已知复数z满足
=a+bi,(a,b∈R),则a+b=( )11+i组卷:80引用:2难度:0.9 -
3.有这样一道题目:“戴氏善屠,日益功倍.初日屠五两,今三十日屠讫,问共屠几何?”其意思为:“有一个姓戴的人善于屠肉,每一天屠完的肉是前一天的2倍,第一天屠了5两肉,共屠了30天,问一共屠了多少两肉?“在这个问题中,该屠夫前5天所屠肉的总两数为( )
组卷:239引用:5难度:0.7 -
4.若|
|=a,|2|=2且(b-a)⊥b,则a与a的夹角是( )b组卷:756引用:53难度:0.9 -
5.现有10名学生排成一排,其中4名男生,6名女生,若有且只有3名男生相邻排在一起,则不同的排法共有( )种
组卷:406引用:8难度:0.8 -
6.已知函数f(x)=2sin(ωx+φ)(ω>0,0
)的图象的相邻两个最高点的距离为<φ<π2,π2,则f(x)=( )f(0)=2组卷:214引用:4难度:0.7 -
7.已知点M,N、P,Q在同一个球面上,且MN=3,NP=4,MP=5,若四面体MNPQ体积的最大值为10,则该球的表面积是( )
组卷:270引用:7难度:0.8
四、解答题(共70分,解答应写出文字说明、证明过程或演算步骤)
-
21.已知抛物线C:y2=2px(p>0)的焦点为F,抛物线C上的点到准线的最小距离为1.
(1)求抛物线C的方程;
(2)若过点F作互相垂直的两条直线l1、l2,l1与抛物线C交于A,B两点,l2与抛物线C交于C,D两点,M,N分别为弦AB,CD的中点,求|MF|•|NF|的最小值.组卷:128引用:5难度:0.5 -
22.已知函数
(a∈R).f(x)=lnx+2x-aexx2
(1)若a≤0,讨论f(x)的单调性;
(2)若f(x)在区间(0,2)内有两个极值点,求实数a的取值范围.组卷:202引用:2难度:0.4