2023年贵州省中考数学冲刺试卷(一)
发布:2024/5/19 8:0:9
一、单选题(本题共12个小题,每小题3分,共36分)
-
1.-
的相反数是( )23组卷:877引用:287难度:0.9 -
2.如图,工程队准备将一段笔直的河道改弯,从而增加游览船的航程,让游客饱览山间风光.这其中体现的数学原理是( )
组卷:596引用:5难度:0.8 -
3.在平面直角坐标系中,点P(-3,0)在( )
组卷:140引用:5难度:0.9 -
4.一个几何体的三视图如图所示,那么这个几何体是( )
组卷:602引用:33难度:0.9 -
5.随着“一带一路”建设的不断发展,我国已与多个国家建立了经贸合作关系,去年中哈铁路(中国至哈萨克斯坦)运输量达8200000吨,将8200000用科学记数法表示为( )
组卷:56引用:4难度:0.8 -
6.将含30°的直角三角板与直尺如图所示放置,若∠2=40°,则∠1的度数为( )
组卷:582引用:13难度:0.6 -
7.一组数据x1,x2,x3,x4,x5的平均数是x,另一组数据2x1+5,2x2+5,2x3+5,2x4+5,2x5+5的平均数是( )
组卷:898引用:10难度:0.9 -
8.实数a,b,c满足a>b,且ac>bc,它们在数轴上的对应点的位置可以是( )
组卷:243引用:8难度:0.5
三、解答题(本题共9个小题,共98分)
-
24.已知二次函数y=a(x+2a-1)(x-a+2)(a是常数,a≠0).
(1)当a=1时,求函数的表达式,并写出函数图象的顶点坐标.
(2)若此函数图象对称轴为直线x=-2时,求函数的最小值.
(3)设此二次函数的顶点坐标为(m,n),当a≠1时,求证:≤nm+a.98组卷:1375引用:4难度:0.3 -
25.如图,AM∥BN,AB⊥BN,点C在射线BN上且∠ACB=50°,BQ⊥AC于点Q,点P是线段QA上任意一点,延长BP交AM于点D,AB=6.
(1)若点P为AC中点,求证:△APD≌△CPB;
(2)当△PBC为等腰三角形时,求∠PBC的度数;
(3)直接写出△PBC的外心运动的路径长.组卷:103引用:2难度:0.5