2019-2020学年河南省郑州市枫杨外国语学校九年级(上)开学数学试卷
发布:2024/4/20 14:35:0
一、选择题(每题3分,共30分)
-
1.下列各式由左到右的变形中,属于分解因式的是( )
组卷:5317引用:58难度:0.9 -
2.若关于x的一元一次不等式组
有解,则m的取值范围为( )x-2m≤0x+m>2组卷:757引用:5难度:0.7 -
3.将数字“6”旋转180°,得到数字“9”;将数字“9”旋转180°,得到数字“6”.现将数字“69”旋转180°,得到的数字是( )
组卷:5523引用:40难度:0.9 -
4.如图,大小不同的两个磁块,其截面都是等边三角形,小三角形边长是大三角形边长的一半,点O是小三角形的内心,现将小三角形沿着大三角形的边缘顺时针滚动,当由①位置滚动到④位置时,线段OA绕三角形顶点顺时针转过的角度是( )
组卷:824引用:6难度:0.7 -
5.已知a+
,则1b=2a+2b≠0的值为( )ab组卷:3133引用:41难度:0.9 -
6.设轮船在静水中速度为v,该船在流水(速度为u<v)中从上游A驶往下游B,再返回A,所用时间为T,假设u=0,即河流改为静水,该船从A至B再返回A,所用时间为t,则( )
组卷:1314引用:11难度:0.5 -
7.如图,四边形ABCD是平行四边形,点E是边CD上一点,且BC=EC,CF⊥BE交AB于点F,P是EB延长线上一点,下列结论:
①BE平分∠CBF;②CF平分∠DCB;③BC=FB;④PF=PC.
其中正确结论的个数为( )组卷:5630引用:43难度:0.7
三、解答题
-
22.如图,M为线段AB上一点,AE与BD交于点C,∠DME=∠A=∠B=α,且DM交AE于点F,ME交BD于点G.
(1)写出图中的三对相似三角形;
(2)连接FG,当AM=MB时,求证:△MFG∽△BMG;
(3)在(2)条件下,若α=45°,AB=4,AF=3,求FG的长.2组卷:403引用:2难度:0.3 -
23.“半角型”问题探究:
(1)如图1,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,且∠EAF=60°,探究图中线段BE,EF,FD之间的数量关系.
小明同学的方法是将△ABE绕点A逆时针旋转120°到△ADG的位置,然后再证明△AFE≌△AFG,从而得出结论:
(2)如图2,在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是边BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由.12
归纳应用
(3)正方形ABCD中,点E、F分别在BC、CD上,且∠EAF=45°,已知BE=3,DF=2,求正方形ABCD的边长.
拓展提高
(4)边长为4的正方形ABCD中,点E、F分别在AB、CD上,AE=CF=1,O为EF的中点,动点G、H分别在边AD、BC上,EF与GH的交点P在O、F之间(与O、F不重合),且∠GPE=45°,设AG=m,求m的取值范围.组卷:2606引用:4难度:0.3