2010年新课标九年级数学竞赛培训第08讲:由常量数学到变量数学
发布:2024/4/20 14:35:0
一、填空题(共7小题,每小题3分,满分21分)
-
1.在平面直角坐标系内,已知点A(2,2),B(2,-3),点P在y轴上,且△APB为直角三角形,则点P的个数为
组卷:108引用:1难度:0.9 -
2.如图,在直角坐标系中,已知点A(4,0)、B(4,4),∠OAB=90°,有直角三角形与Rt△ABO全等且以AB为公共边,请写出这些直角三角形未知顶点的坐标.
组卷:593引用:1难度:0.7 -
3.在平面直角坐标系中有两点A(4,0)、B(0,2),如果点C在坐标平面内,当点C的坐标为时,由点B、O、C组成的三角形与△AOB全等.
组卷:108引用:5难度:0.7 -
4.根据指令[s,A](s≥0,0°<A<180°),机器人在平面上能完成下列动作:先原地逆时针旋转角度A,再朝其面对的方向沿直线行走距离s,现机器人在直角坐标系的坐标原点,且面对x轴正方向.
(1)若给机器人下了一个指令[4,60°],则机器人应移动到点
(2)请你给机器人下一个指令组卷:470引用:12难度:0.5 -
5.如图,在平面直角坐标系中有一个正方形ABCD,它的4个顶点为A(10,0),B (0,10),C(-10,0),D(0,-10),则该正方形内及边界上共有
组卷:191引用:1难度:0.5 -
6.如图,已知边长为1的正方形OABC在直角坐标系中,A、B两点在第一象限内,OA与x轴的夹角为30°,那么点B的坐标是 .
组卷:220引用:4难度:0.7 -
7.如图,一个粒子在第一象限运动,在第一分钟内它从原点运动到(1,0),而后它接着按图所示在与x轴、y轴平行的方向或在x轴、y轴上来回运动,且每分钟移动1个单位长度,那么在2071分钟后这个粒子所处位置为
组卷:405引用:2难度:0.5
三、解答题(共9小题,满分78分)
-
22.现计划把甲种货物1240吨和乙种货物880吨用一列货车运往某地,已知这列货车挂有A、B两种不同规格的货车厢共40节,使用A型车厢每节费用为6000元,使用B型车厢每节费用为8000元.
(1)设运送这批货物的总费用为y万元,这列货车挂A型车厢x节,试写出y与x之间的函数关系式;
(2)如果每节A型车厢最多可装甲种货物35吨和乙种货物15吨,每节B型车厢最多可装甲种货物25吨和乙种货物35吨,装货时按此要求安排A、B两种车厢的节数,那么共有哪几种安排车厢的方案?
(3)在上述方案中,哪个方案运费最省最少运费为多少元?组卷:1283引用:38难度:0.3 -
23.如图,梯形OABC中,O为直角坐标系的原点,A、B、C的坐标分别为(14,0)、(14,3)、(4,3).点P、Q同时从原点出发,分别做匀速运动,其中点P沿OA向终点A运动,速度为每秒1个单位;点Q沿OC、CB向终点B运动,当这两点中有一点到达自己的终点时,另一点也停止运动.设P从出发起运动了t秒.
(1)如果点Q的速度为每秒2个单位,
①试分别写出这时点Q在OC上或在CB上时的坐标(用含t的代数式表示,不要求写出t的取值范围);
②求t为何值时,PQ∥OC?
(2)如果点P与点Q所经过的路程之和恰好为梯形OABC的周长的一半,
①试用含t的代数式表示这时点Q所经过的路程和它的速度;
②试问:这时直线PQ是否可能同时把梯形OABC的面积也分成相等的两部分?如有可能,求出相应的t的值和P、Q的坐标;如不可能,请说明理由.
组卷:244引用:10难度:0.3