人教新版九年级上册《2.5 一元一次方程根与系数的关系》2021年同步练习卷(1)
发布:2024/12/5 15:0:2
一、选择题(本题共计9小题,每题3分,共计27分,)
-
1.已知m,n是一元二次方程x2-4x-3=0的两个实数根,则(m-2)(n-2)为( )
组卷:1039引用:7难度:0.9 -
2.已知x=a是方程x2-3x-5=0的根,则代数式4-2a2+6a的值为( )
组卷:821引用:5难度:0.8 -
3.一元二次方程x2-3x+2=0的两根分别是x1、x2,则x1+x2的值是( )
组卷:343引用:18难度:0.9 -
4.方程x2-2x-1=0的两个解为x1和x2,则x1+x2的值为( )
组卷:46引用:3难度:0.9 -
5.已知x1,x2是方程x2-3x-2=0的两根,则
+x21的值为( )x22组卷:2711引用:27难度:0.8 -
6.下列一元二次方程两实数根和为-4的是( )
组卷:589引用:61难度:0.7 -
7.已知α,β是方程x2+2x-7=0的两个实数根,则α2+3β2+4β的值( )
组卷:185引用:1难度:0.5 -
8.已知一元二次方程2x2-x+c=0有两个不相等的实数根,且其中一根为-1,则另一根为( )
组卷:80引用:1难度:0.5
三、解答题(本题共计6小题,共计66分,)
-
23.设x1,x2是关于x的方程x2-4x+k+1=0的两个实数根.请问:是否存在实数k,使得x1x2>x1+x2成立?试说明理由.
组卷:83引用:3难度:0.5 -
24.先阅读下列的解答过程,然后再解答:
阅读理解:法国数学家韦达在研究一元二次方程时有一项重大发现:如果一元二次方程ax2+bx+c=0(a≠0)的两个根分别是x1、x2.那么x1+x2=-,x1x2=ba.ca
例如:已知方程2x2+3x-5=0的两根分别为x1、x2
则:x1+x2=-=-ba,x1、x2=32=ca=--5252
请同学阅读后完成以下问题:
(1)已知方程3x2-4x-6=0的两根分别为x1、x2,求x1+x2和x1x2的值.
(2)已知方程3x2-4x-6=0的两根分别为x1、x2,求+1x1的值.1x2
(3)若一元二次方程2x2+mx-3=0的一根大于1,另一根小于1,求m的取值范围.组卷:321引用:2难度:0.3