试卷征集
加入会员
操作视频
当前位置: 试卷中心 > 试卷详情

2022-2023学年安徽省安庆市怀宁县新安中学高二(上)期末数学试卷

发布:2024/4/20 14:35:0

一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.

  • 1.经过点(0,1)且与直线x+2y-1=0垂直的直线的方程为(  )

    组卷:102引用:2难度:0.7
  • 2.已知向量
    a
    =(2,-1,3),
    b
    =(-4,2,t)的夹角为钝角,则实数t的取值范围为(  )

    组卷:1093引用:19难度:0.8
  • 3.已知直线l:ax-y+1=0与圆C:(x-1)2+y2=4相交于两点A,B,当a变化时,△ABC的面积的最大值为(  )

    组卷:612引用:7难度:0.5
  • 4.抛物线y2=12x的准线与双曲线
    x
    2
    9
    -
    y
    2
    3
    =1的两条渐近线所围成的三角形面积等于(  )

    组卷:91引用:38难度:0.9
  • 5.设O为坐标原点,P是以F为焦点的抛物线y2=4x上任意一点,若M是线段PF的中点,则直线OM的斜率的最大值为(  )

    组卷:35引用:2难度:0.6
  • 6.已知数列{an}中,a1=1,an=3an-1+4(n∈N*且n≥2),则数列{an}通项公式an为(  )

    组卷:548引用:10难度:0.9
  • 7.在数列{an}中,若a1=0,a n+1-an=2n,则
    1
    a
    2
    +
    1
    a
    3
    +…+
    1
    a
    n
    的值为(  )

    组卷:410引用:5难度:0.5

四、解答题(70分)

  • 21.已知椭圆C:
    x
    2
    a
    2
    +
    y
    2
    b
    2
    =
    1
    a
    b
    0
    ,其离心率为
    2
    2
    ,若F1,F2分别为C的左、右焦点,x轴上方一点P在椭圆C上,且满足PF1⊥PF2
    |
    P
    F
    1
    +
    P
    F
    2
    |
    =
    2
    3

    (Ⅰ)求C的方程;
    (Ⅱ)过点P的直线l交C于另一点Q,点M与点Q关于x轴对称,直线PM交x轴于点N,若△PQN的面积是△QMN的面积的2倍,求直线l的方程.

    组卷:408引用:4难度:0.5
  • 22.已知抛物线C:y2=2px(p>0)的焦点为F,点M(4,4)在C上.
    (1)求以MF为直径的圆E的方程:
    (2)若直线l交抛物线C于异于M的P,Q两点,且直线MP和直线MQ关于直线x=4对称,直线PQ被圆E所截得的弦长为
    2
    5
    ,求直线PQ的方程.

    组卷:45引用:2难度:0.4
深圳市菁优智慧教育股份有限公司
粤ICP备10006842号公网安备44030502001846号
©2010-2025 jyeoo.com 版权所有
APP开发者:深圳市菁优智慧教育股份有限公司| 应用名称:菁优网 | 应用版本:5.0.7 |隐私协议|第三方SDK|用户服务条款
广播电视节目制作经营许可证|出版物经营许可证|网站地图
本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正