人教五四新版九年级(上)中考题单元试卷:第28章 二次函数(21)
发布:2024/4/20 14:35:0
一、选择题(共1小题)
-
1.如图,已知抛物线y1=-x2+1,直线y2=-x+1,当x任取一值时,x对应的函数值分别为y1,y2.若y1≠y2,取y1,y2中的较小值记为M;若y1=y2,记M=y1=y2.例如:当x=2时,y1=-3,y2=-1,y1<y2,此时M=-3.下列判断中:
①当x<0时,M=y1;
②当x>0时,M随x的增大而增大;
③使得M大于1的x值不存在;
④使得M=的值是-12或22,12
其中正确的个数有( )组卷:2518引用:53难度:0.3
二、填空题(共1小题)
-
2.如图,平行于x轴的直线AC分别交函数y1=x2(x≥0)与y2=
(x≥0)的图象于B、C两点,过点C作y轴的平行线交y1的图象于点D,直线DE∥AC,交y2的图象于点E,则x23=.DEAB组卷:6067引用:85难度:0.5
三、解答题(共28小题)
-
3.如图(1),在平面直角坐标系xOy中,抛物线y=ax2+bx+c(a≠0)与x轴交于A(-1,0),B(3,0),与y轴交于C(0,3),顶点为D(1,4),对称轴为DE.
(1)抛物线的解析式是
(2)如图(2),点P是AD上一个动点,P′是P关于DE的对称点,连接PE,过P′作P′F∥PE交x轴于F.设S四边形EPP′F=y,EF=x,求y关于x的函数关系式,并求y的最大值;
(3)在(1)中的抛物线上是否存在点Q,使△BCQ成为以BC为直角边的直角三角形?若存在,求出Q的坐标;若不存在.请说明理由.组卷:1159引用:52难度:0.5 -
4.如图所示,抛物线y=ax2+bx+c的顶点为M(-2,-4),与x轴交于A、B两点,且A(-6,0),与y轴交于点C.
(1)求抛物线的函数解析式;
(2)求△ABC的面积;
(3)能否在抛物线第三象限的图象上找到一点P,使△APC的面积最大?若能,请求出点P的坐标;若不能,请说明理由.组卷:29引用:69难度:0.5 -
5.如图,抛物线y=ax2+bx+2与直线l交于点A、B两点,且A点为抛物线与y轴的交点,B(-2,-4),抛物线的对称轴是直线x=2,过点A作AC⊥AB,交抛物线于点C、x轴于点D.
(1)求此抛物线的解析式;
(2)求点D的坐标;
(3)抛物线上是否存在点K,使得以AC为边的平行四边形ACKL的面积等于△ABC的面积?若存在,请直接写出点K的横坐标;若不存在,请说明理由.[提示:抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=-,顶点坐标为(-b2a,b2a)].4ac-b24a组卷:633引用:50难度:0.5 -
6.如图,2×2网格(每个小正方形的边长为1)中,有A,O,B,C,D,E,F,H,G九个格点.抛物线l的解析式为y=
x2+bx+c.12
(1)若l经过点O(0,0)和B(1,0),则b=,c=;它还经过的另一格点的坐标为.
(2)若l经过点H(-1,1)和G(0,1),求它的解析式及顶点坐标;通过计算说明点D(1,2)是否在l上.
(3)若l经过这九个格点中的三个,直接写出所有满足这样的抛物线的条数.组卷:338引用:52难度:0.5 -
7.如图,在Rt△ABC中,∠C=90°,顶点A、C的坐标分别为(-1,2),(3,2),点B在x轴上,点B的坐标为(3,0),抛物线y=-x2+bx+c经过A、C两点.
(1)求该抛物线所对应的函数关系式;
(2)点P是抛物线上的一点,当S△PAB=S△ABC时,求点P的坐标;54
(3)若点N由点B出发,以每秒个单位的速度沿边BC、CA向点A移动,65秒后,点M也由点B出发,以每秒1个单位的速度沿线段BO向点O移动,当其中一个点到达终点时另一个点也停止移动,点N的移动时间为t秒,当MN⊥AB时,请直接写出t的值,不必写出解答过程.13组卷:584引用:52难度:0.5 -
8.如图,平面直角坐标系中,抛物线y=ax2+bx+4经过点D(2,4),且与x轴交于A(3,0),B(-1,0)两点,与y轴交于点C,连接AC,CD,BC
(1)直接写出该抛物线的解析式
(2)点P是所求抛物线上的一个动点,过点P作x轴的垂线l,l分别交x轴于点E,交直线AC于点M.设点P的横坐标为m.
①当0≤m≤2时,过点M作MG∥BC,MG交x轴于点G,连接GC,则m为何值时,△GMC的面积取得最大值,并求出这个最大值
②当-1≤m≤2时,试探求:是否存在实数m,使得以P,C,M为顶点的三角形和△AEM相似?若存在,求出相应的m值;若不存在,请说明理由.组卷:523引用:50难度:0.5 -
9.如图,已知直线y=-x与二次函数y=-x2+bx+c的图象交于点A、O,O是坐标原点,OA=3
,点P为二次函数图象的顶点,点B是AP的中点.2
(1)求点A的坐标和二次函数的解析式;
(2)求线段OB的长;
(3)射线OB上是否存在点M,使得△AOM与△AOP相似?若存在,请求点M的坐标;若不存在,请说明理由.组卷:451引用:50难度:0.5 -
10.如图,抛物线y=ax2+bx+c与坐标轴分别交于A(-3,0),B(1,0),C(0,3),D是抛物线顶点,E是对称轴与x轴的交点
(1)求抛物线解析式;
(2)F是抛物线对称轴上一点,且tan∠AFE=,求点O到直线AF的距离;12
(3)点P是x轴上的一个动点,过P作PQ∥OF交抛物线于点Q,是否存在以点O,F,P,Q为顶点的平行四边形?若存在,求出点P坐标;若不存在,请说明理由.组卷:694引用:50难度:0.5
三、解答题(共28小题)
-
29.如图,在平面直角坐标系xOy中,直线y=
x+2与x轴交于点A,与y轴交于点C.抛物线y=ax2+bx+c的对称轴是直线x=-12且经过A、C两点,与x轴的另一交点为点B.32
(1)①直接写出点B的坐标;
②求抛物线解析式.
(2)若点P为直线AC上方的抛物线上的一点,连接PA,PC.求△PAC的面积的最大值,并求出此时点P的坐标.
(3)抛物线上是否存在点M,过点M作MN垂直x轴于点N,使得以点A、M、N为顶点的三角形与△ABC相似?若存在,求出点M的坐标;若不存在,请说明理由.组卷:15731引用:81难度:0.1 -
30.如图,直线y=x+2与抛物线y=ax2+bx+6(a≠0)相交于A(
,12)和B(4,m),点P是线段AB上异于A、B的动点,过点P作PC⊥x轴于点D,交抛物线于点C.52
(1)求抛物线的解析式;
(2)是否存在这样的P点,使线段PC的长有最大值?若存在,求出这个最大值;若不存在,请说明理由;
(3)求△PAC为直角三角形时点P的坐标.组卷:30411引用:99难度:0.1