2023年辽宁省抚顺市重点高中六校协作体高考数学二模试卷
发布:2024/11/29 18:30:2
一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
-
1.已知集合A={x|3-x>0},B={x|x+1<0},则A∩B=( )
组卷:43引用:4难度:0.8 -
2.设zi=1-2i(其中i为虚数单位),则复数z=( )
组卷:36引用:2难度:0.9 -
3.函数
的最小正周期为( )f(x)=cos2x2-sin2x2组卷:110引用:2难度:0.8 -
4.已知抛物线x2=4y的焦点为F,准线l与坐标轴交于点N,M是抛物线上一点,若|FN|=|FM|,则△FMN的面积为( )
组卷:257引用:7难度:0.8 -
5.已知a=log53,b=0.2-0.3,
,则( )c=log1612组卷:176引用:4难度:0.7 -
6.已知函数f(x)=ax3+bx在x=1处取得极大值4,则a-b=( )
组卷:220引用:8难度:0.6 -
7.在三棱锥P-ABC中,已知△ABC是边长为8的等边三角形,PA⊥平面ABC,PA=14,则AB与平面PBC所成角的正弦值为( )
组卷:283引用:4难度:0.5
四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.
-
21.已知椭圆C:
)的右焦点为F(2,0),且P(-2,x2a2+y2b2=1(a>b>0)是椭圆C上一点.2
(1)求椭圆C的方程;
(2)若过F的直线l1(与x轴不重合)与椭圆C相交于A,B两点,过F的直线l2与y轴交于点M,与直线x=4交于点N(l1与l2不重合),记△MFB,△NFB,△NFA,△AFM的面积分别为S1,S2,S3,S4,若),求直线l1的方程.S2S4=34(S1+S3组卷:92引用:5难度:0.5 -
22.已知函数f(x)=xex-a-lnx-lna(a>0).
(1)若f(x)的图象在x=1处的切线l与直线x+y+1=0垂直,求直线l的方程;
(2)已知,证明:0<a<5-12.f(x)>aa+1组卷:57引用:3难度:0.5