试卷征集
加入会员
操作视频
当前位置: 试卷中心 > 试卷详情

2022-2023学年广东省深圳市龙华区高二(上)期末数学试卷

发布:2024/4/20 14:35:0

一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.

  • 1.直线
    x
    +
    3
    y
    -
    1
    =
    0
    的倾斜角为(  )

    组卷:217引用:7难度:0.7
  • 2.若数列{an}的通项公式
    a
    n
    =
    1
    +
    -
    1
    n
    (n∈N*),则{an}的前9项和S9=(  )

    组卷:156引用:1难度:0.6
  • 3.已知向量
    a
    =
    1
    1
    x
    b
    =
    -
    2
    2
    3
    ,若
    2
    a
    -
    b
    b
    =
    1
    ,则x=(  )

    组卷:530引用:4难度:0.7
  • 4.等差数列{an}的公差为2,且a1+a5+a9=15,则a2+a6+a10=(  )

    组卷:487引用:3难度:0.8
  • 5.运用微积分的方法,可以推导得椭圆
    x
    2
    a
    2
    +
    y
    2
    b
    2
    =
    1
    (a>b>0)的面积为
    πab
    .现学校附近停车场有一辆
    车,车上有一个长为7m的储油罐,它的横截面外轮廓是一个椭圆,椭圆的长轴长为3m,短轴长为1.8m,则该储油罐的容积约为(π≈3.14)(  )

    组卷:101引用:2难度:0.7
  • 6.若抛物线x2=2y上一点P到y轴的距离为4,则点P到该抛物线焦点的距离为(  )

    组卷:282引用:1难度:0.8
  • 7.在三棱锥S-ABC中,SA⊥平面ABC,
    ABC
    =
    90
    °
    ,SA=AB=BC,则直线AB与SC夹角的余弦值是(  )

    组卷:365引用:2难度:0.7

四、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.

  • 21.如图,在直三棱柱ABC-A1B1C1中,AB=AA1=3,
    ABC
    =
    90
    °
    ,M是BB1的中点,N在棱CC1上,且C1N=2NC.已知平面A1MN与平面ABC的夹角为30°.
    (1)求BC的长;
    (2)求点A到平面A1MN的距离.

    组卷:122引用:1难度:0.6
  • 22.在直角坐标系xOy上,椭圆
    C
    x
    2
    a
    2
    +
    y
    2
    b
    2
    =
    1
    a
    b
    0
    的右焦点为
    F
    3
    0
    ,C的上、下顶点与F连成的三角形的面积为
    3

    (1)求C的方程;
    (2)已知过点F的直线l与C相交于A,B两点,问C上是否存在点Q,使得
    OA
    +
    OB
    =
    OQ
    ?若存出,求出l的方程.若不存在,请说明理由.

    组卷:375引用:4难度:0.6
深圳市菁优智慧教育股份有限公司
粤ICP备10006842号公网安备44030502001846号
©2010-2025 jyeoo.com 版权所有
APP开发者:深圳市菁优智慧教育股份有限公司| 应用名称:菁优网 | 应用版本:5.0.7 |隐私协议|第三方SDK|用户服务条款
广播电视节目制作经营许可证|出版物经营许可证|网站地图
本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正