2022-2023学年安徽省安庆市宿松县八年级(下)期末数学试卷
发布:2024/7/12 8:0:9
一、选择题(本大题共10小题,每小题3分,满分30分。每小题只有一个选项符合题意,请将正确选项的代号填入相应的括号内)
-
1.下列二次根式中,是最简二次根式是( )
组卷:14引用:1难度:0.7 -
2.以下列数据为长度的线段中,可以构成直角三角形的是( )
组卷:1290引用:19难度:0.8 -
3.一元二次方程(x-2)(x-3)=1化为一般形式后,常数项为( )
组卷:671引用:2难度:0.7 -
4.估计
的运算结果应在( )32×12+20组卷:3667引用:124难度:0.9 -
5.若关于x的一元二次方程(a-1)x2-2x+2=0有实数根,则整数a的最大值为( )
组卷:3020引用:68难度:0.7 -
6.如图,在四边形ABCD中,AD∥BC,∠D=90°,AD=8,BC=5,分别以点A,C为圆心,大于
AC长为半径作弧,两弧交于点E,作射线BE交AD于点F,交AC于点O.若点O是AC的中点,则CD的长为( )12组卷:30引用:1难度:0.5 -
7.某厂家2022年1~5月份的自行车产量统计图如图所示,3月份自行车产量不小心被墨汁覆盖.若2月份到4月份该厂家自行车产量的月增长率都相同,则3月份自行车产量为( )
组卷:465引用:5难度:0.5
三、解答题(本大题共9小题,满分74分)
-
22.为了节省材料,某水产养殖户利用水库的一段平直的岸堤(岸堤长20米)为一边,用总长为80米的围网,在水库中围成了如图所示的①②③三块不同的矩形区域用于不同水产的养殖,且这三块矩形区域的面积相等.
(1)设BE的长度为x米,则AE=米,BC=米;(用含x的代数式表示);
(2)当矩形ABCD面积为288米2时,求BC的长度;
(3)矩形ABCD的面积能不能等于360米2,为什么?组卷:334引用:1难度:0.5 -
23.【问题提出】
(1)如图1,在△ABC中,可知AC AB+BC;(填“>”“<”或“=”)
【问题探究】
(2)如图2,在菱形ABCD中,∠C=60°,E是对角线BD上一点,延长AB至点F,使得BF=DE,连接AE,EF.求证:AE=EF;
【问题解决】
(3)如图3,某市一湿地公园内有一块形如正方形ABCD的观光区,已知AB=6km.为了进一步提升服务休闲功能,满足市民游园和健身需求,现要沿DE,DF分别修建步行景观道,其中,点E,F分别在边BC和对角线AC上,AF=BE.为了节省成本,要使所修的步行景观道之和最短,即DE+DF的值最小,试求DE+DF的最小值.(路面宽度忽略不计)组卷:198引用:5难度:0.5