2000年第11届“希望杯”初二培训试卷
发布:2024/4/20 14:35:0
一、选择题(共25小题,每小题1分,满分25分)
-
1.已知b-a>0,且a≥0,那么
( )a2-2ab+b2-|a+b|组卷:54引用:1难度:0.9 -
2.已知a是任意实数,有4个不等式:①2a>a;②a2>a;③a2+a>2;④a2+1>a,那么不等式关系一定成立的有( )个
组卷:138引用:1难度:0.9 -
3.已知关于x的方程(m2+2m+3)x=3(x+2)+m-4有唯一解,那么m的值的情况是( )
组卷:346引用:2难度:0.9 -
4.已知关于x的方程(a+1)x=2ax-a2的解是负数,那么a的值的情况是( )
组卷:189引用:1难度:0.9 -
5.已知对于任意有理数a,b,关于x,y的二元一次方程(a-b)x-(a+b)y=0都有一组公共解,则公共解为( )
组卷:423引用:2难度:0.9 -
6.设
,则M与N的关系是( )M=2000200120012000,N=2001200220022001组卷:61引用:1难度:0.9 -
7.若a,b为有理数且满足
,那么a2b2<3与3的大小关系是( )(a+3b)2(a+b)2组卷:344引用:3难度:0.9 -
8.已知a为正数,且a[a(a+b)+b]+b=1,则a+b的值是( )
组卷:78引用:1难度:0.9 -
9.5个有理数中,若其中任意4个数的和都大于另一个数,那么这5个有理数中( )
组卷:73引用:1难度:0.9 -
10.把自然数n的各位数字之和记为Sn,如n=38,Sn=3+8=11;n=247,Sn=2+4+7=13,若对于某些自然数满足n-Sn=2007,则n的最大值是( )
组卷:321引用:4难度:0.9 -
11.已知四个方程①
;②2x+3+2=0;③43x-2=0;④4x-1+5-3x=0,其中有实数解的方程的个数是( )个.x-x+4=2组卷:55引用:1难度:0.9 -
12.解分式方程
有增根x=1,则k的值等于( )xx-1+kx-1-xx+1=0组卷:181引用:2难度:0.9 -
13.下列计算中,正确的是( )
组卷:28引用:1难度:0.9 -
14.计算
的结果是( )(aa-b+bb-a)÷1a+b组卷:66引用:1难度:0.9 -
15.如图,已知点M是AB的中点,点P在AM上,AP=a,BP=b,则MP的长为( )
组卷:181引用:1难度:0.9 -
16.已知平面中有n个点A,B,C三个点在一条直线上,A,D,F,E四个点也在一条直线上,除些之外,再没有三点共线或四点共线,以这n个点作一条直线,那么一共可以画出38条不同的直线,这时n等于( )
组卷:200引用:1难度:0.9 -
17.已知一个直角∠AOB,以O为端点在∠AOB的内部画10条射线,以OA,OB以及这些射线为边构成的锐角的个数是( )个.
组卷:255引用:1难度:0.7 -
18.一张长方形的纸ABCD,如图将C角折起到E处,作∠EFB的平分线HF,则∠HFG的大小是( )
组卷:38引用:1难度:0.9 -
19.如图Rt△ABC中,∠BAC=90°,AB=AC,D为AC的中点,AE⊥BD交BC于E,若∠BDE=α,∠ADB的大小是( )
组卷:147引用:2难度:0.9 -
20.已知一个多边形的对角线条数正好等于它的边数的2倍,则这个多边形的边数是( )
组卷:394引用:7难度:0.9 -
21.如图平行四边形ABCD中,AE⊥BC,AF⊥CD,∠EAF=45°,且
,则平行四边形ABCD的周长是( )AE+AF=22组卷:296引用:7难度:0.9 -
22.如图,平行四边形ABCD中,BC=2AB,DE⊥AB,M是BC的中点,∠BEM=50°,则∠B的大小是( )
组卷:349引用:3难度:0.9 -
23.如图,梯形ABCD中,AD∥BC,E是AB的中点,CE恰好是平分∠BCD,若AD=3,BC=4,则CD的长是( )
组卷:390引用:2难度:0.9 -
24.如图△ABC中,D点在AC上,AD:DC=1:2,连BD,E是BD的中点,延长AE交BC于F,则BF:FC的比是( )
组卷:333引用:1难度:0.7 -
25.如图△ABC中,∠C为钝角,CF为AB上的中线,BE为AC上的高,若CF=BE,则∠ACF的大小是( )
组卷:199引用:2难度:0.9
三、解答题(共5小题,满分25分)
-
76.在Rt△ABC中,∠A=90°,D,E是AB,AC上两点,DM⊥BC于点M,EN⊥BC于点N,且DM=EN=2.若△BMD,△CNE的面积分别是△ABC面积的
和14,求△ABC的面积.15组卷:33引用:1难度:0.5 -
77.如图,正方形ABCD中,E、F为BC,CD的上点且∠EAF=45°,求证:EF=BE+DF.
组卷:428引用:4难度:0.5