试卷征集
加入会员
操作视频
当前位置: 试卷中心 > 试卷详情

2022-2023学年浙江省宁波市余姚中学高二(上)期中数学试卷

发布:2024/4/20 14:35:0

一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.

  • 1.已知空间向量
    a
    =
    -
    1
    2
    1
    b
    =
    3
    x
    ,-
    3
    ,且
    a
    b
    ,则x=(  )

    组卷:244引用:4难度:0.7
  • 2.直线3x+2y-1=0的一个方向向量是(  )

    组卷:1888引用:41难度:0.9
  • 3.双曲线
    x
    2
    5
    -
    y
    2
    4
    =
    1
    的焦距等于(  )

    组卷:216引用:2难度:0.9
  • 4.圆x2+y2-4=0与圆x2+y2-4x+4y-12=0的公共弦长为(  )

    组卷:168引用:3难度:0.7
  • 5.袋内有大小相同的3个白球和2个黑球,从中不放回地摸球,设事件A=“第一次摸到白球”,事件B=“第二次摸到白球”,事件C=“第一次摸到黑球”,则下列说法正确的是(  )

    组卷:363引用:5难度:0.8
  • 6.在正四面体ABCD中,点E,F,G分别为棱BC,CD,AC的中点,则异面直线AE,FG所成角的余弦值为(  )

    组卷:600引用:10难度:0.7
  • 7.已知椭圆C:
    x
    2
    a
    2
    +
    y
    2
    b
    2
    =
    1
    a
    b
    0
    的左、右焦点分别为F1(-c,0),F2(c,0),若椭圆C上存在一点M使得△MF1F2的内切圆半径为
    c
    2
    ,则椭圆C的离心率的取值范围是(  )

    组卷:816引用:11难度:0.6

四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.

  • 21.如图,四边形ABCD与BDEF均为菱形,FA=FC,AB=2,且∠DAB=∠DBF=60°.
    (1)求证:AC⊥平面BDEF;
    (2)若M为线段DE上的一点,满足直线AM与平面ABF所成角的正弦值为
    2
    30
    15
    ,求线段DM的长.

    组卷:146引用:2难度:0.5
  • 22.在平面直角坐标系xOy中,已知椭圆
    E
    x
    2
    a
    2
    +
    y
    2
    b
    2
    =
    1
    a
    b
    0
    的左、右焦点分别为F1,F2,离心率为
    6
    3
    .点P是椭圆上的一动点,且P在第一象限.记△PF1F2的面积为S,当PF2⊥F1F2时,
    S
    =
    2
    6
    3

    (1)求椭圆E的标准方程;
    (2)如图,PF1,PF2的延长线分别交椭圆于点M,N,记△MF1F2和△NF1F2的面积分别为S1和S2
    (ⅰ)求证:存在常数λ,使得
    1
    S
    1
    +
    1
    S
    2
    =
    λ
    S
    成立;
    (ⅱ)求S2-S1的最大值.

    组卷:272引用:6难度:0.6
深圳市菁优智慧教育股份有限公司
粤ICP备10006842号公网安备44030502001846号
©2010-2025 jyeoo.com 版权所有
APP开发者:深圳市菁优智慧教育股份有限公司| 应用名称:菁优网 | 应用版本:5.0.7 |隐私协议|第三方SDK|用户服务条款
广播电视节目制作经营许可证|出版物经营许可证|网站地图
本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正