2020-2021学年江苏省无锡市滨湖区江南大学附属实验中学七年级(下)第3周周测数学试卷
发布:2025/1/3 18:30:3
一.选择题(每小题3分,共30分)
-
1.如图所示,DE∥BC,EF∥AB,图中与∠BFE互补的角共有( )
组卷:468引用:28难度:0.9 -
2.如图已知∠1=∠2,∠BAD=∠BCD,则下列结论:①AB∥CD,②AD∥BC,③∠B=∠D,④∠D=∠ACB,正确的有( )
组卷:1422引用:30难度:0.7 -
3.将一把直尺和一块含30°角的三角板ABC按如图所示的位置放置,如果∠CED=46°,那么∠BAF的度数为( )
组卷:2990引用:15难度:0.6 -
4.如图,AB∥EF,∠C=90°,则α、β、γ的关系为( )
组卷:6361引用:16难度:0.7 -
5.用A,B,C分别表示学校、小明家、小红家,已知学校在小明家的南偏东25°,小红家在小明家正东,小红家在学校北偏东35°,则∠ACB等于( )
组卷:284引用:18难度:0.7 -
6.如图是一块长方形ABCD的场地,长AB=102m,宽AD=51m,从A、B两处入口的中路宽都为1m,两小路汇合处路宽为2m,其余部分种植草坪,则草坪面积为( )
组卷:1912引用:20难度:0.7 -
7.如图,两个直角三角形重叠在一起,将其中一个三角形沿着点B到点C的方向平移到△DEF的位置,∠B=90°,AB=8,DH=3,平移距离为4,求阴影部分的面积为( )
组卷:3107引用:35难度:0.7
三、解答题(共5小题,满分50分)
-
22.如图,已知点E、F在直线AB上,点G在线段CD上,ED与FG交于点H,∠C=∠EFG,∠CED=∠GHD.
(1)求证:CE∥GF;
(2)试判断∠AED与∠D之间的数量关系,并说明理由;
(3)若∠EHF=100°,∠D=30°,求∠AEM的度数.组卷:3423引用:10难度:0.3 -
23.阅读下面材料:
小亮同学遇到这样一个问题:
已知:如图甲,AB∥CD,E为AB,CD之间一点,连接BE,DE,得到∠BED.
求证:∠BED=∠B+∠D.
(1)小亮写出了该问题的证明,请你帮他把证明过程补充完整.
证明:过点E作EF∥AB,
则有∠BEF=.
∵AB∥CD,
∴∥,
∴∠FED=.
∴∠BED=∠BEF+∠FED=∠B+∠D.
(2)请你参考小亮思考问题的方法,解决问题:如图乙,
已知:直线a∥b,点A,B在直线a上,点C,D在直线b上,连接AD,BC,BE平分∠ABC,DE平分∠ADC,且BE,DE所在的直线交于点E.
①如图1,当点B在点A的左侧时,若∠ABC=60°,∠ADC=70°,求∠BED的度数;
②如图2,当点B在点A的右侧时,设∠ABC=α,∠ADC=β,请你求出∠BED的度数(用含有α,β的式子表示).组卷:1859引用:8难度:0.6