2010年江苏省盐城中学八年级暑假提高专题数学试卷6 矩形、菱形、正方形
发布:2024/4/20 14:35:0
一、选择题(共3小题,每小题4分,满分12分)
-
1.如图(1),把一个长为m,宽为n的长方形(m>n)沿虚线剪开,拼接成图(2),成为在一角去掉一个小正方形后的一个大正方形,则去掉的小正方形的边长为( )
组卷:2218引用:77难度:0.7 -
2.如图,在菱形ABCD中,∠A=110°,E,F分别是边AB和BC的中点,EP⊥CD于点P,则∠FPC=( )
组卷:2727引用:73难度:0.7 -
3.将矩形纸片ABCD按如图所示的方式折叠,AE、EF为折痕,∠BAE=30°,AB=
,折叠后,点C落在AD边上的C1处,并且点B落在EC1边上的B1处.则BC的长为( )3组卷:704引用:50难度:0.9
二、填空题(共3小题,每小题5分,满分15分)
-
4.如图,正方形ABCD的面积为25,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为
组卷:437引用:27难度:0.7
三、解答题(共6小题,满分73分)
-
11.如图①,已知两个菱形ABCD和EFGH是以坐标原点O为位似中心的位似图形(菱形ABCD与菱形EFGH的位似比为2:1),∠BAD=120°,对角线均在坐标轴上,抛物线y=
x2经过AD的中点M.13
(1)填空:A点坐标为 ,D点坐标为 ;
(2)操作:如图②,固定菱形ABCD,将菱形EFGH绕O点顺时针方向旋转α度角(0°<α<90°),并延长OE交AD于P,延长OH交CD于Q.
探究1:在旋转的过程中是否存在某一角度α,使得四边形AFEP是平行四边形?若存在,请推断出α的值;若不存在,说明理由;
探究2:设AP=x,四边形OPDQ的面积为s,求s与x之间的函数关系式,并指出x的取值范围.组卷:153引用:14难度:0.1 -
12.如图1,正方形ABCD和正方形QMNP,M是正方形ABCD的对称中心,MN交AB于F,QM交AD于E.
(1)猜想:ME与MF的数量关系;
(2)如图2,若将原题中的“正方形”改为“菱形”,且∠M=∠B,其它条件不变,探索线段ME与线段MF的数量关系,并加以证明;
(3)如图3,若将原题中的“正方形”改为“矩形”,且AB:BC=1:2,其它条件不变,探索线段ME与线段MF的数量关系,并说明理由;
(4)如图4,若将原题中的“正方形”改为平行四边形,且∠M=∠B,AB:BC=m,其它条件不变,求出ME:MF的值.(直接写出答案)组卷:502引用:4难度:0.1