2016年广东省汕头市金山中学高一入学数学试卷
发布:2024/4/20 14:35:0
一、选择题(共12小题,每小题4分,满分48分)
-
1.如图,实数-3,x,3,y在数轴上的对应点分别为M、N、P、Q,这四个数中绝对值最大的数对应的点是( )
组卷:495引用:14难度:0.9 -
2.下列几何体中,主视图和俯视图都为矩形的是( )
组卷:1940引用:35难度:0.9 -
3.为了弘扬优秀传统文化,通州区30所中学参加了“名著•人生”戏剧展演比赛,最后有13所中学进入决赛,他们的决赛成绩各不相同.某中学已进入决赛且知道自己的成绩,但是否进入前7名,还必须知道这13所中学成绩的( )
组卷:93引用:2难度:0.9 -
4.如图1,在等边三角形ABC中,AB=2,G是BC边上一个动点且不与点B、C重合,H是AC边上一点,且∠AGH=30°.设BG=x,图中某条线段长为y,y与x满足的函数关系的图象大致如图2所示,则这条线段可能是图中的( )
组卷:883引用:9难度:0.9 -
5.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列4个结论:
①abc>0;②b<a+c;③4a+2b+c>0;④b2-4ac>0;
其中正确的结论有( )组卷:412引用:42难度:0.9 -
6.如图,∠A=∠B=90°,AB=7,AD=2,BC=3,在边AB上取点P,使得△PAD与△PBC相似,则这样的P点共有( )
组卷:4657引用:21难度:0.9
三、解答题:本大题共4小题,共52分.解答应写出文字说明、证明过程或演算步骤.l图1
-
19.△ABC中,∠ABC=45°,AB≠BC,BE⊥AC于点E,AD⊥BC于点D.
(1)如图1,作∠ADB的角平分线DF交BE于点F,连接AF.求证:∠FAB=∠FBA;
(2)如图2,连接DE,点G与点D关于直线AC对称,连接DG、EG
①依据题意补全图形;
②用等式表示线段AE、BE、DG之间的数量关系,并加以证明.组卷:741引用:3难度:0.1 -
20.如图1,抛物线y=ax2+bx+3(a≠0)与x轴、y轴分别交于点A(-1,0)、B(3,0)、点C三点.
(1)试求抛物线的解析式;
(2)点D(2,m)在第一象限的抛物线上,连接BC、BD.试问,在对称轴左侧的抛物线上是否存在一点P,满足∠PBC=∠DBC?如果存在,请求出点P点的坐标;如果不存在,请说明理由;
(3)如图2,在(2)的条件下,将△BOC沿x轴正方向以每秒1个单位长度的速度向右平移,记平移后的三角形为△B′O′C′.在平移过程中,△B′O′C′与△BCD重叠的面积记为S,设平移的时间为t秒,试求S与t之间的函数关系式?组卷:6421引用:13难度:0.1