试卷征集
加入会员
操作视频
当前位置: 试卷中心 > 试卷详情

2022-2023学年辽宁省辽南协作校高二(上)期末数学试卷

发布:2024/4/20 14:35:0

一、选择题(本题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的)

  • 1.
    x
    2
    -
    3
    x
    n
    的展开式中,二项式系数的和是16,则展开式中各项系数的和为(  )

    组卷:245引用:6难度:0.8
  • 2.设随机变量X服从正态分布N(1,2),若P(x<a)=P(x>b),则实数a+b=(  )

    组卷:284引用:3难度:0.7
  • 3.随机变量X的分布列如下表所示,则P(X≤2)=(  )
    X 1 2 3 4
    P 0.1 m 0.3 2m

    组卷:678引用:4难度:0.7
  • 4.“杨辉三角”是中国古代数学文化的瑰宝之一,最早在中国南宋数学家杨辉1261年所著的《详解九章算法》一书中出现,欧洲数学家帕斯卡在1654年才发现这一规律,比杨辉要晚近四百年.在由二项式系数所构成的“杨辉三角”中(如下图),记第2行的第3个数字为a1、第3行的第3个数字为a2,……,第n(n≥2)行的第3个数字为an-1,则a1+a2+a3+⋯+a10=(  )

    组卷:109引用:4难度:0.8
  • 5.已知过点P(2,2)的直线与圆(x-1)2+y2=5相切,且与直线ax-y+1=0平行,则a=(  )

    组卷:1158引用:10难度:0.7
  • 6.某班准备从甲、乙等5人中选派3人发言,要求甲乙两人至少有一人参加,那么不同的发言顺序有(  )

    组卷:197引用:3难度:0.7
  • 7.设A,B为两个事件,已知P(B)=0.4,P(A)=0.5,P(B|A)=0.3,则P(A|B)=(  )

    组卷:835引用:4难度:0.6

四、解答题(本题共6小题,共70分。解答应写出文字说明、证明过程或演算步骤。)

  • 21.一家医药研究所,从中草药中提取并合成了甲、乙两种抗“H病毒”的药物,经试验,服用甲、乙两种药物痊愈的概率分别为
    1
    2
    1
    3
    ,现已进入药物临床试用阶段,每个试用组由4位该病毒的感染者组成,其中2人试用甲种抗病毒药物,2人试用乙种抗病毒药物,如果试用组中,甲种抗病毒药物治愈人数人数超过乙种抗病毒药物的治愈人数,则称该组为“甲类组”,
    (1)求一个试用组为“甲类组”的概率;
    (2)观察3个试用组,用η表示这3个试用组中“甲类组”的个数,求η的分布列和数学期望.

    组卷:137引用:7难度:0.5
  • 22.已知椭圆E:
    x
    2
    a
    2
    +
    y
    2
    b
    2
    =
    1
    (a>b>0)的离心率为
    1
    2
    ,且点
    P
    1
    3
    2
    在椭圆E上.
    (1)求椭圆E的方程;
    (2)过椭圆E的右焦点F作不与两坐标轴重合的直线l,与E交于不同的两点M,N,线段MN的中垂线与y轴相交于点T,求
    |
    MN
    |
    |
    OT
    |
    (O为原点)的最小值,并求此时直线l的方程.

    组卷:409引用:2难度:0.6
深圳市菁优智慧教育股份有限公司
粤ICP备10006842号公网安备44030502001846号
©2010-2025 jyeoo.com 版权所有
APP开发者:深圳市菁优智慧教育股份有限公司| 应用名称:菁优网 | 应用版本:5.0.7 |隐私协议|第三方SDK|用户服务条款
广播电视节目制作经营许可证|出版物经营许可证|网站地图
本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正