试卷征集
加入会员
操作视频
当前位置: 试卷中心 > 试卷详情

2022-2023学年四川省内江六中创新班高一(上)第一次月考数学试卷

发布:2024/12/17 20:0:1

一、单选题(满分40分,每小题5分)

  • 1.已知集合A={x|x2-x≤2},B={x|a≤x≤a+1},若B⊆A,则实数a的取值集合为(  )

    组卷:755引用:2难度:0.7
  • 2.设x∈R,则“2-x≥0”是“|x-1|≤1”的(  )

    组卷:5821引用:47难度:0.9
  • 3.若向量
    a
    b
    满足
    |
    a
    |
    =
    1
    |
    b
    |
    =
    2
    a
    a
    +
    b
    ,则
    a
    b
    的夹角为(  )

    组卷:236引用:7难度:0.8
  • 4.若关于x的不等式ax2-2ax-2<0恒成立,则实数a的取值范围为(  )

    组卷:511引用:6难度:0.7
  • 5.已知函数f(x)=
    x
    2
    -
    4
    x
    +
    6
    x
    0
    x
    +
    6
    x
    0
    ,则不等式f(x)>3的解集是(  )

    组卷:73引用:3难度:0.7
  • 6.已知函数f(x)=loga(8-ax)满足a>1,若f(x)>1在区间[1,2]上恒成立,则实数a的取值范围是(  )

    组卷:206引用:6难度:0.6
  • 7.已知点A是单位圆与x轴正半轴的交点,点B在第二象限.记∠AOB=θ且
    sinθ
    =
    4
    5
    .则
    sin
    π
    +
    θ
    +
    2
    sin
    π
    2
    -
    θ
    2
    tan
    π
    -
    θ
    =(  )

    组卷:81引用:7难度:0.7

四、解答题(满分70分)

  • 21.已知函数
    f
    x
    =
    4
    sin
    ωx
    2
    cos
    ωx
    2
    +
    π
    3
    +
    m
    ω
    0
    .在下列条件①、条件②、条件③这三个条件中,选择可以确定ω和m值的两个条件作为已知.
    (1)求
    f
    π
    6
    的值;
    (2)若函数f(x)在区间[0,a]上是增函数,求实数a的最大值.
    条件①:f(x)最小正周期为π;
    条件②:f(x)最大值与最小值之和为0;
    条件③:f(0)=2.

    组卷:135引用:2难度:0.5
  • 22.双曲函数是一类与常见的三角函数类似的函数,最基本的双曲函数是双曲正弦函数和双曲余弦函数(历史上著名的“悬链线问题”与之相关).记双曲正弦函数为f(x),双曲余弦函数为g(x),已知这两个最基本的双曲函数具有如下性质:
    ①定义域均为R,且f(x)在R上是增函数;
    ②f(x)为奇函数,g(x)为偶函数;
    ③f(x)+g(x)=ex(常数e是自然对数的底数,e=2.71828⋯).
    利用上述性质,解决以下问题:
    (1)求双曲正弦函数和双曲余弦函数的解析式;
    (2)证明:对任意实数x,[f(x)]2-[g(x)]2为定值;
    (3)已知m∈R,记函数y=2m•g(2x)-4f(x),x∈[0,ln2]的最小值为φ(m),求φ(m).

    组卷:115引用:4难度:0.5
深圳市菁优智慧教育股份有限公司
粤ICP备10006842号公网安备44030502001846号
©2010-2025 jyeoo.com 版权所有
APP开发者:深圳市菁优智慧教育股份有限公司| 应用名称:菁优网 | 应用版本:5.0.7 |隐私协议|第三方SDK|用户服务条款
广播电视节目制作经营许可证|出版物经营许可证|网站地图
本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正