2013-2014学年吉林省吉林一中高二(下)入学数学试卷(2月份)(文科)
发布:2024/4/20 14:35:0
一、单项选择
-
1.若a,b都是实数,则“
”是“a2-b2>0”的( )a-b>0组卷:187引用:27难度:0.9 -
2.若a、b、c∈R,a>b,则下列不等式成立的是( )
组卷:1742引用:172难度:0.9 -
3.已知α、β均为锐角,若p:sinα<sin(α+β),q:α+β<
,则p是q的( )π2组卷:176引用:18难度:0.9 -
4.下列不等式一定成立的是( )
组卷:1360引用:55难度:0.9 -
5.数列{an}满足
,当x∈[an,an+1)时,f(x)=an-2,则方程2f(x)=x的根的个数为( )an+2-an+1=an+1-an=a1+1=1(n∈N*)组卷:236引用:2难度:0.7
三、解答题
-
16.数列{an}的首项为a(a≠0),前n项和为Sn,且Sn+1=t•Sn+a(t≠0).设bn=Sn+1,cn=k+b1+b2+…+bn(k∈R+).
(1)求数列{an}的通项公式;
(2)当t=1时,若对任意n∈N*,|bn|≥|b3|恒成立,求a的取值范围;
(3)当t≠1时,试求三个正数a,t,k的一组值,使得{cn}为等比数列,且a,t,k成等差数列.组卷:152引用:5难度:0.1 -
17.已知函数
,a∈R.f(x)=|x-a|-a2lnx
(1)求函数f(x)的单调区间;
(2)若函数f(x)有两个零点x1,x2,(x1<x2),求证:1<x1<a<x2<a2.组卷:123引用:5难度:0.5