2022-2023学年重庆市两江育才中学高二(上)期末数学试卷
发布:2024/4/20 14:35:0
一、单选题(本大题共8小题,每小题5分,共40分.在每小题列出的选项中,选出符合题目的一项)
-
1.若
,a+b=(-2,-1,2),则a-b=(4,-3,-2)等于( )a•b组卷:426引用:6难度:0.8 -
2.若纯虚数z满足z•(2-3i)=5+mi,则实数m的值为( )
组卷:141引用:6难度:0.9 -
3.若直线过点(1,2),(2,2+
),则此直线的倾斜角是( )3组卷:190引用:8难度:0.8 -
4.洛书,古称龟书,是阴阳五行术数之源,在古代传说中有神龟出于洛水,其甲壳上有此图象,结构是戴九履一,左三右七,二四为肩,六八为足,以五居中,五方白圈皆阳数,四角黑点为阴数.如图,若从四个阴数和五个阳数中各随机选取1个数,则选取的两数之和能被5整除的概率( )
组卷:101引用:4难度:0.8 -
5.已知等差数列{an}的前n项和为Sn,a1>0,公差d<0,a5=3a7.若Sn取得最大值,则n的值为( )
组卷:592引用:6难度:0.7 -
6.空间中两条不同的直线m,n和平面α,则下列命题中正确的是( )
组卷:83引用:2难度:0.6 -
7.已知直线l1:2x+y+n=0,l2:4x+my-4=0互相平行,且l1,l2之间的距离为
,则m+n=( )355组卷:1124引用:8难度:0.7
四、解答题(本大题共6小题,其中17题10分,其余题目每题12分,共70分.解答应写出文字说明,证明过程或演算步骤)
-
21.设函数
,数列{an}满足f(x)=23+1x(x>0),n∈N*,且n≥2.a1=1,an=f(1an-1)
(1)求数列{an}的通项公式;
(2)对n∈N*,设,若Sn=1a1a2+1a2a3+1a3a4+…+1anan+1恒成立,求实数t的取值范围.Sn≥3t4n组卷:122引用:2难度:0.3 -
22.已知椭圆C:
(a>b>0)的离心率为x2a2+y2b2=1,短轴长为2.32
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若直线l:y=kx+m(k≠0)与椭圆C交于不同的两点M,N,且线段MN的垂直平分线过定点(1,0),求实数k的取值范围.组卷:2186引用:4难度:0.4