2022-2023学年四川省成都市高一(下)月考物理试卷(4月份)
发布:2024/11/14 2:0:2
一.选择题(共8小题,满分24分,每小题3分)
-
1.如图所示,同一竖直平面内有四分之一圆环BC和倾角为53°的斜面AC,A、B两点与圆环BC的圆心O等高。现将甲、乙小球分别从A、B两点以初速度v1、v2沿水平方向同时抛出,两球恰好在C点相碰(不计空气阻力),已知sin53°=0.8,cos53°=0.6,下列说法正确的是( )
组卷:130引用:1难度:0.7 -
2.如图,光滑斜面的倾角为θ=45°,斜面足够长,在斜面上A点向斜上方抛出一小球,初速度方向与水平方向夹角为α,小球与斜面垂直碰撞于D点,不计空气阻力;若小球与斜面碰撞后返回A点,碰撞时间极短,且碰撞前后能量无损失,重力加速度g取10m/s2.则可以求出的物理量是( )
组卷:1263引用:3难度:0.1 -
3.摩擦传动是传动装置中的一个重要模型,如图所示的两个水平放置的轮盘靠摩擦力传动,其中O、O'分别为两轮盘的轴心,已知两个轮盘的半径比r甲:r乙=3:1,且在正常工作时两轮盘不打滑。今在两轮盘上分别放置两个同种材料制成的滑块A、B,两滑块与轮盘间的动摩擦因数相同,两滑块距离轴心O、O'的间距RA=2RB。若轮盘乙由静止开始缓慢地转动起来,且转速逐渐增加,则下列叙述正确的是( )
①滑块A和B在与轮盘相对静止时,角速度之比为ω甲:ω乙=1:3;
②滑块A和B在与轮盘相对静止时,向心加速度的比值为aA:aB=2:9;
③转速增加后滑块B先发生滑动;
④转速增加后滑块A先发生滑动。组卷:295引用:3难度:0.6 -
4.如图所示,竖直面内的圆形管道半径R远大于横截面的半径,有一小球的直径比管横截面直径略小,在管道内做圆周运动。小球过最高点时,小球对管壁的弹力大小用F表示、速度大小用v表示,当小球以不同速度经过管道最高点时,其F-v2图像如图所示。则( )
组卷:97引用:2难度:0.6 -
5.如图所示,放于竖直面内的光滑金属细圆环半径为R,质量为m的带孔小球穿于环上,同时有一长为R的细绳一端系于球上,另一端系于圆环最低点,绳能承受的最大拉力为2mg。重力加速度的大小为g,当圆环以角速度ω绕竖直直径转动时,下列说法错误的是( )
组卷:966引用:3难度:0.3 -
6.太阳系各行星几乎在同一平面内沿同一方向绕太阳做圆周运动。当地球恰好运行到某地外行星和太阳之间,且三者几乎排成一条直线的现象,天文学称为“行星冲日”。已知地球及各地外行星绕太阳运动的轨道半径如表所示,天文单位用符号AU表示。则( )
行星 地球 火星 木星 土星 天王星 海王星 轨道半径r/AU 1.0 1.5 5.2 9.5 19 30 组卷:89引用:1难度:0.6
四.计算题(共4小题,满分42分)
-
18.牛顿在前人研究的基础上,利用他的运动定律把行星的向心加速度与太阳对它的引力联系起来,巧妙推导出太阳和行星之间的引力关系。
(1)行星围绕太阳的运动当作匀速圆周运动,已知行星的质量为m,太阳的质量为M,行星与太阳中心之间的距离为r,请利用牛顿定律和开普勒定律导出太阳和行星之间的引力表达式F=G;Mmr2
(2)牛顿思考月球绕地球运行的原因时,苹果偶然落地引起了他的遐想:拉住月球使它围绕地球运动的力与拉着苹果下落的力,是否都与太阳吸引行星的力性质相同,遵循着统一的规律--平方反比规律?因此,牛顿开始了著名的“月-地检验”。
a.已知月球与地球的距离约为地球半径的60倍,如果牛顿的猜想正确,请你据此计算月球公转的向心加速度a和苹果下落的加速度g的比值;ag
b.在牛顿的时代,月球与地球的距离r′、月球绕地球公转的周期T′等都能比较精确地测定,请你据此写出计算月球公转的向心加速度a的表达式;已知r′≈3.84×108m,T′≈2.36×106s,地面附近的重力加速度g=9.80m/s2,请你根据这些数据估算比值a;与(1)中的结果相比较,你能得出什么结论?
c.假如有一颗在赤道上的苹果树,长到了月亮的高度。请你根据苹果的运动状态进行受力分析,在图中的树枝上画出一个长势符合物理规律的苹果,并推断如果树冠上的苹果被人用剪刀剪离树枝,苹果是否会落回地面?(分析过程中可忽略其它星球对苹果的作用)。组卷:171引用:3难度:0.3 -
19.如图,竖直平面内一足够长的光滑倾斜轨道与一长为L的水平轨道通过一小段光滑圆弧平滑连接,水平轨道右下方有一段弧形轨道PQ。质量为m的小物块A与水平轨道间的动摩擦因数为μ。以水平轨道末端O点为坐标原点建立平面直角坐标系xOy,x轴的正方向水平向右,y轴的正方向竖直向下,弧形轨道P端坐标为(2μL,μL),Q端在y轴上。重力加速度为g。
(1)若A从倾斜轨道上距x轴高度为2μL的位置由静止开始下滑,求A经过O点时的速度大小;
(2)若A从倾斜轨道上不同位置由静止开始下滑,经过O点落在弧形轨道PQ上的动能均相同,求PQ的曲线方程;
(3)将质量为λm(λ为常数且λ≥5)的小物块B置于O点,A沿倾斜轨道由静止开始下滑,与B发生弹性碰撞(碰撞时间极短),要使A和B均能落在弧形轨道上,且A落在B落点的右侧,求A下滑的初始位置距x轴高度的取值范围。组卷:2035引用:4难度:0.1