2023年山西省金太阳高考数学联考试卷(4月份)
发布:2024/4/20 14:35:0
一、选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合
-
1.已知集合A={-3,-1,1,3,5},B={x||x-2|<3},则A∩B=( )
组卷:49引用:3难度:0.7 -
2.已知a∈R,
为纯虚数,则a=( )a+i2-4i组卷:111引用:5难度:0.8 -
3.设△ABC的内角A,B,C的对边分别为a,b,c,若
,a=3,c=2,则sinA=( )A+B=5π6组卷:222引用:5难度:0.8 -
4.函数
的部分图象大致为( )f(x)=(x-1x)sinx组卷:169引用:7难度:0.8 -
5.已知圆O:x2+y2=1与圆C:(x-3)2+y2=r2外切,直线l:x-y-5=0与圆C相交于A,B两点,则|AB|=( )
组卷:178引用:5难度:0.6 -
6.甲、乙、丙三人玩传球游戏,每个人都等可能地把球传给另一人,由甲开始传球,作为第一次传球,经过3次传球后,球回到甲手中的概率为( )
组卷:209引用:11难度:0.9 -
7.在正三棱柱ABC-A1B1C1中,AB=2,AA1=3,以C1为球心,
为半径的球面与侧面ABB1A1的交线长为( )393组卷:138引用:5难度:0.6
四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.
-
21.已知椭圆
的离心率为C:x2a2+y2b2=1(a>b>0),且椭圆C经过点63,过右焦点F的直线l与椭圆C交于A,B两点.(3,1)
(1)求椭圆C的方程;
(2)设O为坐标原点,求△OAB面积的最大值以及此时直线l的方程.组卷:550引用:10难度:0.5 -
22.已知函数f(x)=ex+cosx-sinx,f′(x)为f(x)的导函数.
(1)证明:当x≥0时,f′(x)≥0.
(2)判断函数g(x)=[f(x)+f(2x)-e2x]-1的零点个数.e2x-π2组卷:68引用:2难度:0.6