2022-2023学年广东省深圳市龙岗区百合外国语学校九年级(下)期中数学试卷
发布:2024/4/20 14:35:0
一、选择题:(本题10个小题,每题3分,共30分
-
1.下列说法中,正确的是( )
组卷:191引用:6难度:0.8 -
2.贴窗花是我国春节喜庆活动的一个重要内容,它起源于西汉时期,历史悠久,风格独特,深受国内外人士的喜爱.下列窗花作品为轴对称图形的是( )
组卷:278引用:9难度:0.9 -
3.《百合绽放》是百合外国语学校在20年校庆之际,融入全校教职工和学生智慧于一体而编写的,该书凸显了百外建校以来的“和合而生”的教育理念和收括了许多的教育案例,该书第一次印刷就出版了5500册.将5500用科学记数法表示为( )
组卷:25引用:1难度:0.7 -
4.下列运算正确的是( )
组卷:207引用:4难度:0.7 -
5.费尔兹奖是国际上享有崇高声誉的一个数学奖项,每四年评选一次,主要授予年轻的数学家.下面数据是部分获奖者获奖时的年龄(单位:岁):31,32,33,35,35,39,则这组数据的众数和中位数分别是( )
组卷:153引用:5难度:0.6 -
6.一个布袋中放着6个黑球和18个红球,除了颜色以外没有任何其他区别.则从布袋中任取1个球,取出黑球的概率是( )
组卷:377引用:3难度:0.8 -
7.如图所示,直线a∥b,直线c分别交a,b于点A,C,点B在直线b上AB⊥AC,若∠1=140°,则∠2的度数是( )
组卷:273引用:2难度:0.7
三、解答题:(本题7个小题,共55分)
-
21.《几何原本》是古希腊数学家欧几里得的一部不朽著作,是数学发展史的一个里程碑.在该书的第2卷“几何与代数”部分,记载了很多利用几何图形来论证的代数结论,利用几何给人以强烈印象将抽象的逻辑规律体现在具体的图形之中.
(1)我们在学习许多代数公式时,可以用几何图形来推理,观察下列图形,找出可以推出的代数公式,(下面各图形均满足推导各公式的条件,只需填写对应公式的序号)
公式①:(a+b+c)d=ad+bd+cd
公式②:(a+b)(c+d)=ac+ad+bc+bd
公式③:(a-b)2=a2-2ab+b2
公式④:(a+b)2=a2+2ab+b2
图1对应公式 ,图2对应公式 ,图3对应公式 ,图4对应公式 .
(2)《几何原本》中记载了一种利用几何图形证明平方差公式(a+b)(a-b)=a2-b2的方法,如图5,请写出证明过程;(已知图中各四边形均为矩形)
(3)如图6,在等腰直角三角形ABC中,∠BAC=90°,D为BC的中点,E为边AC上任意一点(不与端点重合),过点E作EG⊥BC于点G,作EH⊥AD于点H,过点B作BF∥AC交EG的延长线于点F.记△BFG与△CEG的面积之和为S1,△ABD与△AEH的面积之和为S2.
①若E为边AC的中点,则的值为 ;S1S2
②若E不为边AC的中点时,试问①中的结论是否仍成立?若成立,写出证明过程;若不成立,请说明理由.组卷:940引用:4难度:0.1 -
22.阅读材料:小百合特别喜欢探究数学问题,一天万老师给她这样一个几何问题:
如图1,△ABC和△BDE都是等边三角形,将△BDE绕着点B旋转α°,求证:AE=CD.
【探究发现】(1)小百合很快就通过△ABE≌△CBD,论证了AE=CD,于是她想,把等边△ABC和等边△BDE都换成等腰直角三角形,如图2,将△BDE绕着点B旋转α°,其中∠ACB=∠EDB=90°那么AE和CD有什么数量关系呢?请写出你的结论,并给出证明.
【拓展迁移】(2)如果把等腰直角三角形换成正方形,如图3,将正方形AFEG绕点A旋转α°,若AB=6,AG=4,在旋转过程中,当C,G,E三点共线时,请直接写出DG的长度.2
【拓展延伸】(3)小百合继续探究,做了如下变式:如图4,矩形ABCD≌矩形FECG,且具有公共顶点C,将矩形ABCD固定,另一个矩形FECG绕着点C顺时针旋转α°(0<α<90),连接AF、DG,直线GD交AF于点H,在旋转的过程中,试证明H为AF的中点.组卷:308引用:1难度:0.4