浙教新版九年级上册《1.4 二次函数的应用》2021年同步练习卷(浙江省温州市永嘉县东方外国语学校)
发布:2024/4/20 14:35:0
一.选择题(共22小题)
-
1.如图,抛物线y1=ax2+bx+c与直线y2=kx+m的交点为A(1,-3),B(6,1).当y1>y2时,x的取值范围是( )
组卷:828引用:6难度:0.7 -
2.如图,抛物线y=ax2+c与直线y=kx+b交于点A(-4,p),B(2,q),则关于x的不等式ax2+c<-kx+b的解集是( )
组卷:1405引用:4难度:0.6 -
3.如图是二次函数y1=ax2+bx+c(a≠0)和一次函数y2=mx+n(m≠0)的图象.则下列结论正确的是( )
组卷:366引用:3难度:0.6 -
4.如图,已知抛物线y=ax2+c与直线y=kx+m交于A(-3,y1),B(1,y2)两点,则关于x的不等式ax2+c≥-kx+m的解集是( )
组卷:4529引用:26难度:0.5 -
5.共享单车为市民出行带来了方便,某单车公司第一个月投放a辆单车,计划第三个月投放单车y辆,若第二个月的增长率是x,第三个月的增长率是第二个月的两倍,那么y与x的函数关系是( )
组卷:657引用:7难度:0.6 -
6.国家决定对某药品分两次降价,若设平均每次降价的百分比为x,该药品的原价为33元,降价后的价格为y元,则y与x之间的函数关系为( )
组卷:1279引用:7难度:0.5 -
7.如图,在Rt△ABO中,AB⊥OB,且AB=OB=3,设直线x=t截此三角形所得的阴影部分的面积为S,则S与t之间的函数关系式为( )
组卷:2179引用:9难度:0.7 -
8.某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边用长为40米的篱笆围成,已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边长为x米,围成的苗圃面积为y平方米,则y关于x的函数关系式为( )
组卷:2615引用:10难度:0.7 -
9.如图,某农场拟建一间矩形奶牛饲养室,打算一边利用房屋现有的墙(墙足够长),其余三边除大门外用栅栏围成,栅栏总长度为50m,门宽为2m.若饲养室长为xm,占地面积为ym2,则y关于x的函数表达式为( )
组卷:1847引用:9难度:0.7 -
10.某文学书的售价为每本30元,每星期可卖出200本,书店准备在年终进行降价促销.经市场调研发现,单价每下降2元,每星期可多卖出10本.设每本书降价x元后,每星期售出此文学书的销售额为y元,则y与x之间的函数关系式为( )
组卷:419引用:5难度:0.8
二.解答题(共8小题)
-
29.某河上有一座抛物线形拱桥,水面离拱顶5m时,水面AB宽8m.一木船宽4m,高2m,载货后,木船露出水面的部分为
m.以拱顶O为原点建立如图所示的平面直角坐标系,A,B为抛物线与水面的交点.当水面离拱顶1.8m时,木船能否通过这座拱桥?34组卷:675引用:3难度:0.5 -
30.如图,马大爷在屋侧的菜地上搭建一抛物线型蔬菜大棚,其中一端固定在离地面1.2米的墙体A处,另一端固定在离墙体6米的地面上B点处,现以地面和墙体为x轴和y轴建立坐标系,已知大棚的高度y(米)与地面水平距离x(米)之间的关系式用y=
x2+bx+c表示.结合信息请回答:-15
(1)直接写出b,c的值.
(2)求大棚的最高点到地面的距离.
(3)马大爷现库存7米钢材,准备在抛物线上点C(不与A,B重合)处,安装一直角形钢架ECD对大棚进行加固(点D,E分别在x轴、y轴上,且CE∥x轴,CD∥y轴),就如何选取点C的问题,小明说:“点C取在抛物线的顶点处,库存钢材才够用”,小慧说“点C在抛物线上任意位置,库存钢材都够用”,请问谁的说法正确?说明理由.组卷:392引用:2难度:0.4