2023年山西省吕梁市孝义市中考数学三模试卷
发布:2024/7/27 8:0:9
一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该选项涂黑)
-
1.-2的相反数是( )
组卷:1194引用:63难度:0.9 -
2.下列运算正确的是( )
组卷:157引用:1难度:0.8 -
3.近日,某校组织“自然资源文化创意大赛”,旨在宣传“新时代、美自然、好生活”,大赛分为“平面类”、“视觉类”、“实物类”三个竞赛单元,各单元按成绩由高到低,分别设立金奖5名、银奖10名、铜奖15名、优秀奖30名.甲同学参加了“视觉类”竞赛,并且竞赛成绩进入了前30名,该同学想知道自己能否至少获得银奖,需比较自己的成绩与前30名同学成绩的( )
组卷:117引用:5难度:0.7 -
4.如图是一个正方体的展开图,在原正方体中,与“祝”字所在面相对的面上的汉字是( )
组卷:735引用:8难度:0.7 -
5.某商店经销一种品牌的空气炸锅,其中某一型号的空气炸锅的进价为每台m元,商店将进价提高30%后作为零售价销售,一段时间后,商店又按零售价的8折销售,这时该型号空气炸锅的零售价为( )
组卷:829引用:5难度:0.5 -
6.如图,在▱ABCD中,点E是AD的中点,对角线AC,BD相交于点O,连接OE,若△ABC的周长是10,则△AOE的周长为( )
组卷:508引用:11难度:0.5 -
7.如图,在矩形纸片ABCD中,AB=6,BC=8,点E是AB上一点,点F是BC上一点,将矩形沿EF折叠,使点B的对应点G正好落在AD的中点处,则AE的长为( )
组卷:197引用:4难度:0.8
三、解答题(本大题共8个小题,共75分.解答题应写出文字说明、证明过程或演算步骤)
-
22.综合与实践
问题情境:数学课上,老师提出如下问题:如图,四边形ABCD是矩形,分别以AD,CD为边,在矩形ABCD外侧作正方形ADEF和CDMN(点B,A,F在同一直线上,点B,C,N在同一直线上).连接FN,取FN的中点P,连接BP.
求证:BP⊥FN,.BP=12FN
解决问题:
(1)请你解答老师提出的问题.
数学思考:
(2)受到老师所提问题的启发,“兴趣小组”又提出了一个新问题:如图,若四边形ABCD是平行四边形(∠DAB≠90°),其余条件保持不变,则老师所提问题的结论是否保持不变?请你说明理由.
(3)“智慧小组”所提的问题是:如图,四边形ABCD是菱形,分别以AD,CD为边,在菱形外侧作正方形ADEF和CDMN.连接BD并延长,交FN于点P.若∠DAB=30°,FN=6,求BD的长.请你思考该问题,并直接写出结果.
组卷:314引用:2难度:0.4 -
23.综合与探究:
如图,已知抛物线与x轴交于A,B两点(点A在点B的左边),与y轴交于点C.直线BC与抛物线的对称轴交于点E.将直线BC沿射线CO方向向下平移n个单位,平移后的直线与直线AC交于点F,与抛物线的对称轴交于点D.y=-38x2+94x+6
(1)求出点A,B,C的坐标,并直接写出直线AC,BC的解析式;
(2)当△CDB是以BC为斜边的直角三角形时,求出n的值;
(3)直线BC上是否存在一点P,使以点D,E,F,P为顶点的四边形是菱形?若存在,请直接写出点P的坐标;若不存在,请说明理由.组卷:1045引用:3难度:0.5