2022年贵州省普通高等学校高考数学模拟试卷(理科)
发布:2024/4/20 14:35:0
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
-
1.设集合A={x|y=x},B={(x,y)|y=x2},则A∩B=( )
组卷:94引用:1难度:0.9 -
2.若复数z=a+(b-2)i(a,b∈R)在复平面内对应的点在直线x-y-2=0上,则a-b=( )
组卷:60引用:1难度:0.8 -
3.
展开式中第5项的系数是( )(x-2x)10组卷:309引用:3难度:0.8 -
4.已知命题p:函数
的最小值为2,命题q:∀x∈R,ln(|x|+1)≥0,则下列命题为真命题的是( )f(x)=x+1x组卷:47引用:2难度:0.8 -
5.生物入侵是指生物由原生存地侵入到另一个新的环境,从而对入侵地的生态系统造成危害的现象.若某入侵物种的个体平均繁殖数量为Q,一年四季均可繁殖,繁殖间隔T为相邻两代间繁殖所需的平均时间.在物种入侵初期,可用对数模型K(n)=λlnn(λ为常数)来描述该物种累计繁殖数量n与入侵时间K(单位:天)之间的对应关系,且
,在物种入侵初期,基于现有数据得出Q=6,T=50.据此估计该物种累计繁殖数量比初始累计繁殖数量增加11倍所需要的时间为( )(ln2≈0.69,ln3≈1.10)Q=Tλ+1组卷:132引用:6难度:0.6 -
6.已知角α满足cos(α+
)=π6,则sin(2α-13)=( )π6组卷:429引用:7难度:0.7 -
7.若双曲线
的实轴的一个端点是由双曲线的一个焦点和虚轴的两个端点所构成的三角形的重心,则该双曲线的离心率为( )x2a2-y2b2=1(a>0,b>0)组卷:103引用:3难度:0.8
(二)选考题:共10分.请考生在第22、23两题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程](10分)
-
22.在直角坐标系xOy中,直线l的参数方程为
(m为参数),曲线C的参数方程为x=3my=1+m(t为参数).x=t+1ty=t-1t
(1)求直线l和曲线C的普通方程;
(2)已知点P(0,1),若直线l与曲线C交于A,B两点,求的值.1|PA|+1|PB|组卷:397引用:5难度:0.7
[选修4一5:不等式选讲](10分)
-
23.已知f(x)=|2x-6|+|x+1|.
(1)求不等式f(x)<5的解集;
(2)若a>0,b>0且2a+b=2,证明:∀x∈R,∃a,b∈R+,.f(x)≥12a+1b组卷:47引用:4难度:0.5