试卷征集
加入会员
操作视频
当前位置: 试卷中心 > 试卷详情

2021-2022学年浙江省绍兴市高一(下)期末数学试卷

发布:2024/12/17 22:30:2

一、单项选择题(本大题共8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一项是符合题目要求的)

  • 1.已知i为虚数单位,复数Z满足(1+i)Z=i,则
    Z
    的虚部(  )

    组卷:95引用:5难度:0.9
  • 2.已知点A(0,1),B(3,2),向量
    AC
    =(-4,-3),则向量
    BC
    =(  )

    组卷:10227引用:81难度:0.9
  • 3.从装有2个红球和2个黑球的口袋内任取两个球,那么互斥而不对立的事件是(  )

    组卷:1256引用:34难度:0.7
  • 4.从3名男同学和2名女同学中任选2人参加社区服务,则选中的2人都是男同学的概率为(  )

    组卷:300引用:3难度:0.8
  • 5.已知平面α、β,直线l⊂α,直线m不在平面α上,下列说法正确的是(  )

    组卷:1082引用:22难度:0.6
  • 6.为了选拔数学尖子生,某校数学组在高一年级中挑选出10位学生进行解题能力测试,这10位学生在一小时内正确解出的题的个数分别是14,17,14,10,16,17,17,16,14,12,设该数据的平均数为a,第50百分位数为b,则有(  )

    组卷:119引用:1难度:0.7
  • 7.已知|
    m
    |=|
    n
    |=1,
    p
    =
    m
    +x
    n
    (x∈R),函数f(x)=|
    p
    |,当x=
    3
    4
    时,f(x)有最小值,则
    m
    n
    上的投影向量为(  )

    组卷:250引用:7难度:0.7

四、解答题(本大题共6小题,共52分,解答应写出文字说明、证明过程或演算步骤)

  • 21.在△ABC中,角A,B,C所对边分别为a,b,c,a=2,bcosA+acosB=λb(λ是常数),D是AB的中点.
    (1)若λ=1求
    c
    b
    的值;
    (2)若λ=1且CD=3,求cosA的值;
    (3)若λ=2时,求△BCD面积的最大值.

    组卷:225引用:1难度:0.6
  • 22.已知四棱锥P-ABCD中,△PBC为正三角形,底面ABCD为直角梯形,AD∥BC,∠ADC=90°,AD=CD=3,BC=4.
    (1)设F为BC中点,问:在线段AD上是否存在这样的点E,使得平面PAD⊥平面PEF成立.若存在,求出AE的长;若不存在,请说明理由;
    (2)已知PD=
    13

    ①求二面角P-BC-A的平面角的余弦值;
    ②求直线AC和平面PAD所成角的正弦值.

    组卷:374引用:3难度:0.5
深圳市菁优智慧教育股份有限公司
粤ICP备10006842号公网安备44030502001846号
©2010-2025 jyeoo.com 版权所有
APP开发者:深圳市菁优智慧教育股份有限公司| 应用名称:菁优网 | 应用版本:5.0.7 |隐私协议|第三方SDK|用户服务条款
广播电视节目制作经营许可证|出版物经营许可证|网站地图
本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正