2020-2021学年重庆八中九年级(下)定时训练数学试卷(十)
发布:2024/12/17 9:0:2
一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的框涂黑。
-
1.-
的倒数是( )13组卷:1617引用:575难度:0.9 -
2.如图是一个由6个相同正方体组成的立体图形,它的主视图是( )
组卷:81引用:3难度:0.8 -
3.下列计算正确的是( )
组卷:28引用:2难度:0.7 -
4.在“生命安全”主题教育活动中,为了解甲、乙、丙、丁四所学校学生对生命安全知识掌握情况,小丽制定了如下方案,你认为最合理的是( )
组卷:1910引用:39难度:0.9 -
5.如图,是蓄水池的横断面示意图,分深水区和浅水区,如果以固定的流量向蓄水池注水,下面哪个图象能大致表示水的最大深度h和时间t之间的关系( )
组卷:1439引用:9难度:0.7 -
6.《九章算术》中记录的一道题译为白话文是:把一份文件用慢马送到900里外的城市,需要的时间比规定时间多一天,如果用快马送,所需的时间比规定时间少3天,已知快马的速度是慢马的2倍,求规定时间.设规定时间为x天,则可列方程为( )
组卷:3363引用:57难度:0.6 -
7.如图,在平面直角坐标系中,点A的坐标为(1,0),点D的坐标为(3,0),若△ABC与△DEF是位似图形,则
的值是( )ACDF组卷:465引用:8难度:0.6 -
8.如图,AB、CD都是⊙O的弦,且AB⊥CD,若∠CDB=57°,则∠ACD的度数为( )
组卷:86引用:3难度:0.7
三、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上。
-
25.如图,在平面直角坐标系xOy中,抛物线y=ax2+
x+c(a≠0)与x轴交于A、B两点(A在B的左侧),与y轴交于点C,其中A(-2,0),tan∠ACO=94,D为抛物线顶点.13
(1)求该抛物线的解析式;
(2)如图1,点E在线段BD上方抛物线上运动(不含端点B、D),求S△EDB的最大值及此时点E的坐标;
(3)如图2,将抛物线水平向右平移,使得平移后的抛物线经过点O,M为平移后的抛物线的对称轴直线l上一动点,将线段AC沿直线BC平移,平移后的线段记为A′C′(线段A'C′始终在直线l左侧),是否存在以A′、C′、M为顶点的等腰直角△A'C′M?若存在,请写出满足要求的所有点M的坐标,并写出其中一种结果的求解过程,若不存在,请说明理由.组卷:94引用:1难度:0.2
四、解答题:(本大题1个小题,8分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上。
-
26.如图1,在等腰△ABC中,∠BAC=30°,AB=AC,以AC为边作等腰Rt△CAD,其中∠CAD=90°,AC=AD,连接BD.
(1)若CD=4,求BD的长;2
(2)如图2,作∠BAC的角平分线交BD于点E,猜想AE与BC的数量关系,并证明;
(3)如图3,点P是直线BC上一动点,连接DP,作等边△DPF,在(1)(2)问条件下,求EF最小值.组卷:96引用:1难度:0.1