2020年北京市中国人民大学附中高考数学模拟试卷(6月份)(三模)
发布:2024/4/20 14:35:0
一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.
-
1.设集合P={3,log2a},Q={a,b},若P∩Q={0},则P∪Q=( )
组卷:2059引用:104难度:0.9 -
2.若复数z=
,则|z|=( )21+3i组卷:70引用:12难度:0.9 -
3.已知
,a=(13)25,b=(25)-13,则( )c=log325组卷:131引用:2难度:0.8 -
4.已知函数f(x)的图象沿x轴向左平移2个单位后与函数y=2x的图象关于x轴对称,若f(x0)=-1,则x0=( )
组卷:124引用:2难度:0.8 -
5.为了解某年级400名女生五十米短跑情况,从该年级中随机抽取8名女生进行五十跑测试,她们的测试成绩(单位:秒)的茎叶图(以整数部分为茎,小数部分为叶)如图所示.由此可估计该年级女生五十米跑成绩及格(及格成绩为94秒)的人数为( )
组卷:40引用:1难度:0.9 -
6.“
”是“函数φ=-π6与函数g(x)=cos(2x+φ)(x∈R)为同一函数”的( )f(x)=sin(2x+π3)(x∈R)组卷:194引用:3难度:0.6 -
7.某四棱锥的三视图如图所示,则该四棱锥的体积是( )
组卷:55引用:3难度:0.5
三、解答题共6小题,共85分.解答应写出文字说明、演算步骤或证明过程.
-
20.椭圆
的离心率是E:x2a2+y2b2=1(a>b>0),过点P(0,1)作斜率为k的直线l,椭圆E与直线l交于A,B两点,当直线l垂直于y轴时53.|AB|=33
(Ⅰ)求椭圆E的方程;
(Ⅱ)当k变化时,在x轴上是否存在点M(m,0),使得△AMB是以AB为底的等腰三角形,若存在求出m的取值范围,若不存在说明理由.组卷:173引用:8难度:0.5 -
21.在平面直角坐标系中,对于任意相邻三点都不共线的有序整点列(整点即横纵坐标都是整数的点)A(n):A1,A2,A3,…,An与B(n):B1,B2,B3,…,Bn,其中n≥3,若同时满足:①两点列的起点和终点分别相同;②线段AiAi+1⊥BiBi+1,其中i=1,2,3,…,n-1,则称A(n)与B(n)互为正交点列.
(Ⅰ)试判断A(3):A1(0,2),A2(3,0),A3(5,2)与B(3):B1(0,2),B2(2,5),B3(5,2)是否互为正交点列,并说明理由;
(Ⅱ)求证:A(4):A1(0,0),A2(3,1),A3(6,0),A4(9,1)不存在正交点列B(4);
(Ⅲ)是否存在无正交点列B(5)的有序整数点列A(5)?并证明你的结论.组卷:109引用:2难度:0.1