2022年安徽省淮南市高考数学一模试卷(文科)
发布:2024/12/26 10:0:3
一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
-
1.已知集合A={x|x>2或x<-4},B={x|x<a},若A∪B=R,则a的取值范围为( )
组卷:92引用:2难度:0.7 -
2.设复数z满足(1-i)z=1+i,则|z|=( )
组卷:55引用:8难度:0.9 -
3.已知命题p:“x>2且y>3”是“x+y>5”的充要条件;命题q:∃x0∈R,曲线f(x)=x3-x在点(x0,f(x0))处的切线斜率为-1,则下列命题为真命题的是( )
组卷:44引用:5难度:0.7 -
4.在区间
上随机取一个数x,则sinx的值介于0到[0,π2]之间的概率为( )32组卷:70引用:2难度:0.8 -
5.若实数x,y满足约束条件
,若z=x-2y的最大值等于3,则实数a的值为( )x-y+2≥0x+y≥0x-a≤0组卷:48引用:2难度:0.7 -
6.已知函数
,则下列说法正确的是( )f(x)=cosx-2cos2(π4-x2)组卷:88引用:3难度:0.7 -
7.在△ABC中,内角A,B,C的对边分别为a,b,c,若函数f(x)=
)x无极值点,则角B的最大值是( )13x3+bx2+(a2+c2+2ac组卷:71引用:1难度:0.6
(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]
-
22.在直角坐标系xOy中,曲线C的参数方程为
(t为参数),以直角坐标系的原点为极点,x轴的正半轴为极轴建立极坐标系,已知直线l的极坐标方程为2cosθ-sinθ=x=t2y=2t.4ρ
(1)求曲线C的普通方程;
(2)若直线l与曲线C交于A,B两点,求以AB为直径的圆的极坐标方程.组卷:57引用:5难度:0.7
[选修4-5:不等式选讲]
-
23.已知函数
的最小值为-2.f(x)=|2x+m|-|2x-1|
(1)求m的值;
(2)若实数a,b满足,求a2+b2的最小值.1a2+2+1b2+1=m组卷:40引用:2难度:0.5