试卷征集
加入会员
操作视频
当前位置: 试卷中心 > 试卷详情

2021-2022学年河北省秦皇岛市卢龙第二高级中学高二(上)期中数学试卷

发布:2024/11/24 4:30:2

一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)

  • 1.已知直线a的倾斜角为45°,则a的斜率是(  )

    组卷:191引用:5难度:0.9
  • 2.圆心在(-1,0),半径为
    5
    的圆的方程为(  )

    组卷:514引用:4难度:0.8
  • 3.下列直线中,与直线x-2y+1=0垂直的是(  )

    组卷:384引用:8难度:0.9
  • 4.已知直线3x+2y-3=0和6x+my+1=0互相平行,则它们之间的距离是(  )

    组卷:636引用:28难度:0.9
  • 5.若圆心坐标为(2,-1)的圆被直线x-y-1=0截得的弦长为
    2
    2
    ,则这个圆的方程是(  )

    组卷:83引用:3难度:0.7
  • 6.若三棱锥P-ABC的三条侧棱两两垂直,且满足PA=PB=PC=1,则点P到平面ABC的距离是(  )

    组卷:102引用:11难度:0.5
  • 7.已知直三棱柱ABC-A1B1C1中,∠ABC=60°,AB=2,BC=CC1=1,则异面直线AB1与BC1所成角为(  )

    组卷:76引用:5难度:0.8

四、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)

  • 21.如图所示,AE⊥平面ABCD,四边形AEFB为矩形,BC∥AD,BA⊥AD,AE=AD=2AB=2BC=2.
    (1)求证:CF∥平面ADE;
    (2)求平面CDF与平面AEFB所成锐二面角的余弦值.

    组卷:10引用:1难度:0.7
  • 22.在①平面PAB⊥平面ABCD,②AP⊥CD,③BC⊥平面PAB这三个条件中任选一个,补充在下面的问题中并作答.如图,在四棱锥P-ABCD中,底面ABCD是梯形,点E在BC上,AD∥BC,AB⊥AD,AB⊥AP,BC=2AB=2AD=2AP=4BE=4,且_____.
    (1)求证:平面PDE⊥平面PAC;
    (2)求直线PE与平面PAC所成角的正弦值.

    组卷:96引用:3难度:0.5
深圳市菁优智慧教育股份有限公司
粤ICP备10006842号公网安备44030502001846号
©2010-2025 jyeoo.com 版权所有
APP开发者:深圳市菁优智慧教育股份有限公司| 应用名称:菁优网 | 应用版本:5.0.7 |隐私协议|第三方SDK|用户服务条款
广播电视节目制作经营许可证|出版物经营许可证|网站地图
本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正