试卷征集
加入会员
操作视频
当前位置: 试卷中心 > 试卷详情

2023年浙江省嘉兴市桐乡一中高考数学适应性试卷(5月份)

发布:2024/5/6 8:0:9

一、选择题I:本大题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的。

  • 1.已知U=R,A={x|x2-4x+3≤0},B={x||x-3|>1},则A∪∁UB=(  )

    组卷:643引用:11难度:0.8
  • 2.已知复数z满足z(1+2i)=|4-3i|(其中i为虚数单位),则复数z的虚部为(  )

    组卷:742引用:18难度:0.8
  • 3.已知两个非零向量
    a
    b
    满足
    |
    a
    |
    =
    3
    |
    b
    |
    a
    +
    b
    b
    ,则
    cos
    a
    b
    =(  )

    组卷:498引用:5难度:0.8
  • 4.折扇是我国传统文化的延续,在我国已有四千年左右的历史,“扇”与“善”谐音,折扇也寓意“善良”“善行”.它常以字画的形式体现我国的传统文化,也是运筹帷幄、决胜千里、大智大勇的象征(如图1).图2是一个圆台的侧面展开图(扇形的一部分),若两个圆弧DE,AC所在圆的半径分别是3和6,且∠ABC=120°,则该圆台的体积为(  )

    组卷:346引用:8难度:0.7
  • 5.甲乙丙丁戊5个人站成一排,则甲乙均不站两端的概率(  )

    组卷:52引用:2难度:0.7
  • 6.
    2
    cos
    2
    θ
    +
    sin
    θ
    +
    π
    4
    =
    0
    θ
    0
    π
    2
    ,则sinθ=(  )

    组卷:119引用:2难度:0.7
  • 7.已知动直线l与圆O:x2+y2=4交于A,B两点,且∠AOB=120°.若l与圆(x-2)2+y2=25相交所得的弦长为t,则t的最大值与最小值之差为(  )

    组卷:773引用:6难度:0.5

四、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤。

  • 21.已知双曲线E:
    x
    2
    a
    2
    -
    y
    2
    b
    2
    =
    1
    a
    0
    b
    0
    的离心率为
    5
    ,并且经过点(
    2
    ,2).
    (1)求双曲线E的方程.
    (2)若直线l经过点(2,0),与双曲线右支交于P、Q两点(其中P点在第一象限),点Q关于原点的对称点为A,点Q关于y轴的对称点为B,且直线AP与BQ交于点M,直线AB与PQ交于点N,证明:双曲线在点P处的切线平分线段MN.

    组卷:246引用:3难度:0.5
  • 22.已知函数f(x)=ex-ax2,a∈R.
    (1)若a≤
    e
    2
    ,证明:f(x)在(0,+∞)上单调递增.
    (2)若F(x)=alnx+
    f
    x
    x
    存在两个极小值点x1,x2(x1<x2).
    ①求实数a的取值范围;
    ②试比较F(x1)与F(x2)的大小.

    组卷:102引用:4难度:0.3
深圳市菁优智慧教育股份有限公司
粤ICP备10006842号公网安备44030502001846号
©2010-2025 jyeoo.com 版权所有
APP开发者:深圳市菁优智慧教育股份有限公司| 应用名称:菁优网 | 应用版本:5.0.7 |隐私协议|第三方SDK|用户服务条款
广播电视节目制作经营许可证|出版物经营许可证|网站地图
本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正