2010年新课标九年级数学竞赛培训第18讲:圆的基本性质
发布:2024/4/20 14:35:0
一、填空题(共7小题,每小题5分,满分35分)
-
1.在半径为1的圆中,弦AB、AC分别
和3,则∠BAC=.2组卷:455引用:10难度:0.5 -
2.D是半径为5cm的⊙O内的一点,且OD=3cm,则过点D的所有弦中,最小的弦AB=
组卷:105引用:4难度:0.5 -
3.阅读下面材料:
对于平面图形A,如果存在一个圆,使图形A上的任意一点到圆心的距离都不大于这个圆的半径,则称图形A被这个圆所覆盖.
对于平面图形A,如果存在两个或两个以上的圆,使图形A上的任意一点到其中某个圆的圆心的距离都不大于这个圆的半径,则称图形A被这些圆所覆盖.
例如:图甲中的三角形被一个圆所覆盖,图乙中的四边形被两个圆所覆盖.
回答下列问题:
(1)边长为1cm的正方形被一个半径为r的圆所覆盖,r的最小值是cm;
(2)边长为1cm的等边三角形被一个半径为r的圆所覆盖,r的最小值是cm;
(3)长为2cm,宽为1cm的矩形被两个半径都为r的圆所覆盖,r的最小值是cm.组卷:171引用:1难度:0.7 -
4.以线段AB为直径作一个半圆,圆心为O,C是半圆周上的点,且OC2=AC•BC,则∠CAB=.
组卷:164引用:10难度:0.7 -
5.如图,把正△ABC的外接圆对折,使点A落在弧BC的中点F上,若BC=5,则折痕在△ABC内的部分DE长为
组卷:393引用:21难度:0.5 -
6.如图,已知AB为⊙O的弦,直径MN与AB相交于⊙O内,MC⊥AB于C,ND⊥AB于D,若MN=20,AB=
,则MC-ND=86组卷:215引用:1难度:0.5 -
7.如图⊙O的半径为3,点C,D是直径AB同侧圆周上的两点,弧AC的度数为96°,弧BD的度数为36°,动点P在AB上,则PC+PD的最小值为
组卷:466引用:4难度:0.5
三、解答题(共12小题,满分99分)
-
22.将三块边长均为10cm的正方形煎饼不重叠地平放在圆碟内,则圆碟的直径至少是多少?(不考虑其他因素,精确到0.1cm)
组卷:137引用:1难度:0.3 -
23.如图,直径为13的⊙O′经过原点O,并且与x轴、y轴分别交于A、B两点,线段OA、OB(OA>OB)的长分别是方程x2+kx+60=0的两根.
(1)求线段OA、OB的长;
(2)已知点C在劣弧OA上,连接BC交OA于D,当OC2=CD•CB时,求C点的坐标;
(3)在(2)问的条件下,在⊙O′上是否存在点P,使S△POD=S△ABD?若存在,求出点P的坐标;若不存在,请说明理由.组卷:734引用:9难度:0.1